3510

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 5, MAY 2025

A General Method for the Development of
Constrained Codes

Boris Ryabko", Member, IEEE

Abstract—Nowadays there are several classes of constrained
codes intended for different applications. The following two large
classes can be distinguished. The first class contains codes with
local constraints; for example, the source data must be encoded
by binary sequences containing no sub-words 00 and 111. The
second class contains codes with global constraints; for example,
the code-words must be binary sequences of certain even length
where half of the symbols are zeros and half are ones. It is
important to note that often the necessary codes must fulfill
some requirements of both classes. In this paper we propose a
general polynomial complexity method for constructing codes for
both classes, as well as for combinations thereof. The proposed
method uses the Cover enumerative code, but calculates all the
parameters on the fly with polynomial complexity, unlike the
known applications of that code which employ combinatorial
formulae. The main idea of the paper is to use dynamic
programming to perform calculations like: how many sequences
with a given prefix and a given suffix length satisfying constraints
exist. For the constraints under consideration, we do not need
to know the entire prefix, but much less knowledge about the
prefix is sufficient. That is, we only need a brief description of
the prefix.

Index Terms—Constrained codes, run-length limited codes,
cover algorithm, polynomial complexity algorithm.

I. INTRODUCTION

N MODERN transmission and storage systems, source

information is converted using data compression methods,
self-correcting codes and constrained codes. The purpose of
data compression and correction coding is to reduce the
amount of data before transmission and to include additional
data to correct the information after transmission or storage,
respectively. The purpose of constrained encoding is to trans-
form the original data before transmission to avoid all (or
most) errors. Of course, all the codes mentioned above can
be used together to improve performance.

Constrained codes have been intensively researched and
applied in practice since the middle of the 20th century,

Received 17 June 2024; revised 4 December 2024; accepted 13 March
2025. Date of publication 18 March 2025; date of current version 23 April
2025. This work was supported in part by the State Assignment of Ministry
of Science and Higher Education of Russian Federation for Federal Research
Center for Information and Computational Technologies and in part by the
State Assignment of Siberian State University of Telecommunications and
Informatics (SibSUTIS) under Grant 071-03-2024-008.

The author is with the Federal Research Center for Information and Com-
putational Technologies, 630090 Novosibirsk, Russia, also with the Siberian
State University of Telecommunications and Informatics, 630009 Novosibirsk,
Russia, and also with the Novosibirsk State University, 630090 Novosibirsk,
Russia (e-mail: boris@ryabko.net).

Communicated by I. Tal, Associate Editor for Coding and Decoding.

Digital Object Identifier 10.1109/TIT.2025.3552660

when various hard and optical discs became widespread [1].
Nowadays, the constrained codes are used in many kinds of
storage devices and numerous data transmission systems [1],
[2], [3], [4] and these applications are based on profound
theoretical results developed in numerous publications, see [1],
[2], and [4] for reviews.

The so-called runlength-limited codes (RLL) were perhaps
the first class of constrained codes [2], [3], [4]. These codes
are defined via constraints on the length of runs of ones and/or
zeros. In this paper we consider a somewhat more general code
set that includes RLL as a subset, but we take the liberty to
use the same abbreviation RLL because RLL codes are widely
used in practice and are well known; at the same time, the
proposed extension of this set is very simple and natural.

So, the proposed RLL class can be defined as follows:
there exists a finite set of forbidden words (or patterns)
U = {u,u,...} and any codeword must not contain any
forbidden subwords. For example, if u; = 00,u, = 111,
the codeword set of the three-letter constrained code is as
follows: 010,011, 101,110 (hence, this code can be used to
encode 2-bit source words). Various RLL codes have been
developed for many sets of forbidden patterns designed to meet
the requirements of different storage devices and transmission
systems, and there are now simply realisable and efficient
algorithms for many RLL codes, see [2], [3], and [4] for a
review.

Another large class of the constrained codes requires some
constraints for the codeword as a whole. To describe several
such codes, it will be convenient to represent the codewords
over the alphabet {—1,41}. So, the so-called balanced code
is probably the first code of this type proposed by Gorog
[6]. A balanced code (BC) of even length n is defined as
{x1x2..x, : Y%, x; = 0}. Sometimes a more general problem
is considered where the sum is not zero but is bounded by
some (small) number a, that is, |x; 4. ..+ x,| < a. Later these
codes were investigated by many researchers, and some results
can be found in [2], [3], [5], [7], [8], [9], and [10] for general
alphabets.

Another object of study is the limited running sum (LRS)
code. By definition, for any of its codewords x = xj...x,
the current sum must satisfy |x; + x, + ... + x| < ¢ for any
k=1,2,...,n, where § > 0 is a parameter. Note that for a
codeword x = xy ...x, and any k, [,k <[, we have |x; + x4+
we. + 7] £ 26. So, the sum is limited for any so-called “sliding
window” x....x;. For small § and large n, LRS codes have a
small zero frequency (dc) in the spectrum, and this property

0018-9448 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Boris Ya Ryabko - Riabko. Downloaded on November 08,2025 at 04:37:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7232-9644

RYABKO: GENERAL METHOD FOR THE DEVELOPMENT OF CONSTRAINED CODES

is very desirable for many storage devices and communication
systems. This is why LRS codes have been developed by many
researchers, see [1], [2], [3], and [5] for a review.

We combine the BC and LRS codes into one class by the
following definition of the set of words x;...x, from the
alphabet A:

k
Tn(él,éz,a,ﬁ)z{xl X1 81<Y <6y k=1,...,n-1
i=1

and @ <Y xi <. 6y Sasﬁﬁéz}. (1)
i=1
Indeed, for @ = 61,8 = 6, ws obtain LRS constrained codes
and for @ = 0 = n mingeq a, B = d2 = n MaX,eq @ WE Obtain
BC constrained codes.

The fourth class of codes with constraints is the so-called
codes with energy constraints [11]. In this case, it is convenient
to use the alphabet {0, 1} and it is assumed that any 1 carries
a unit of energy. (So, a sequence of letters from {0, 1} conveys
not only information but also energy.) In this problem, the
density of units (i.e., the rate of energy transferred) must be
bounded within some limits.

In this paper, we consider the following formal model: there
exists a source of sequences in the alphabet A consisting
of integers (of type {0, 1} or {—1,+41}) and these sequences
of some length n must be encoded by a certain constrained
code, that is, a sequence x encoded by a codeword c(x) of a
constrained code such that c(x) # c(y) if x # y. If we denote the
set of all possible codewords by C, it is obvious that |C| > 2".
(Here and below |u| is the length of u if u is a word, and the
number of elements if u is a set.)

In 1973, Cover proposed the so-called enumerative source
coding [12], which has been widely used for constrained
coding [2], [4], [13], [14]. It is worth noting that this enu-
merative coding was used prior to Cover’s paper for the case
of encoding 0 — 1 words of a certain length n with a fixed
number m of ones (and obviously n — m zeros) [15], [16],
[17].

Generally speaking, Cover’s code can be used to create
any constrained code, but such applications require some a
priori combinatorial analysis. For example, the code for the
mentioned problem about 0—1 sequences with a fixed number
of units is based on binomial coefficients and Pascal’s triangle,
whereas for other constrained codes the combinatorial analysis
and the obtained combinatorial formulas are more complicated
[4], [14].

Results are now available for some pairs of constraints,
especially combining RLL with some others, and in all cases
the resulting codes are based on rather complex elaborated
combinatorial formulas [4], [14], [18], [19]. Apparently, the
absence of known combinatorial formulas and methods of their
development is a significant obstacle for construction of new
constrained codes for various problems.

In this paper we propose a new approach to constructing
codes with constraints in which the required parameters are
computed in polynomial time and no special combinato-
rial analysis is required. The following is an example of a
“complex” problem which can be solved by the suggested

3511

method without combinatorial analysis. We need to construct
a constrained code for an n-letter sequence x;x, of {0, 1}
for which i) the density of units is at least 1/2, ii) the sum
of units does not exceed |2n/3], iii) |Zf=1 xi —k/2] < 20
for k = 1,...,n and iv) the words 0011 and 01010 should
be excluded. (Thus, this problem includes all four constraints
mentioned above.)

The rest of the paper consists of the following. Part 2
contains the description of the Cover method. The part 3
contains description of the limited running sum (LRS) code.
Parts 4 and 5 contain description of codes with constraints
for the two other problems described above. Part 6 describes
codes for the combinations of constraints described above and
studied in Parts 3 and 5. In Conclusion we talk about the
complexity of the proposed algorithms, some simplifications
and generalisations of the described codes, as well as the scope
of the proposed method.

II. THE COVER METHOD

In [12] Cover suggested the following general method of
an enumerative encoding. There is an m-letter alphabet A =
{ai,as,...,a,} and let A" be a set of words of length n over A.
Every subset S C A" is called a source. An enumerative code f
is given by two mappings f. : S — {0, 1}/, where [= [log|S|]
and f; : f.(S) — §, so that f;(f.(s)) = s for all s € §. The
map f. is called an encoder and f; is called a decoder. It is
assumed that the alphabet A consists of numbers. It should be
noted that in some sense the names “encoder” and ‘“decoder”
are interchangeable. The definition given above is often used
in some data compression tasks, while the opposite definition
is natural for some others.

Let us describe an enumerative code from [12].

Encoder: Let N(x;...x;) be the number of words which
belong to S and have the prefix x;...x, k= 1,2,...,n— 1.
For x1x;...x, € § define the code word f.(x;...x,) by

code(xy...x,) = Z ZN(xl L. Xil14). 2)
i=1 a<x;
Decoder: Let us describe the decoder. Denote o =

code(xy...x,), and b,1; = N(e) + 1, where N(e) =
> aeaN(@ (= IS]) (e is the common representation of the
empty string). Then calculate by = N(a;),b; = N(a2),...,by =
N(ap). I Y7 by < a < YT b, then the first letter x, is a;.
In order to find x, the algorithm calculates @ = a—N(a;),b; =
N(xaj),j =1,....m. If Z];:l by < a < Zﬁ:,l b, then the
second letter x, is ay, and so on.

Note that the complexity of the Cover method is determined
by the complexity of computing N(), and hence, developing
a simple method for computing N() is the main problem.
Currently, the use of Cover’s method is based on combinatorial
formulas to compute N(), as shown in the following example
of encoding binary words of n-letters with a given number of
units v. That is, the alphabet A = {0, 1}, set S contains words
for which }}_, x; = v. In this case

-k
N(x;...x-10) = (v _nzk—l x') . 3)
i=1 Xi

Authorized licensed use limited to: Boris Ya Ryabko - Riabko. Downloaded on November 08,2025 at 04:37:08 UTC from IEEE Xplore. Restrictions apply.

3512

Using this formula and (2) we obtain

- n—k
code(xy...x,) = Xy _ .

(This solution was found before the Cover code was described,
see [15], [16], [17]). The set of binomial coefficients (3) can
be stored in memory or computed on the fly as needed.

Nowadays combinatorial formulas for many codes with
constraints are known and widely used in practice. But some-
times such formulas can be very complicated, and for some
interesting problems these formulas are not developed at all.

In this paper we propose a direct computation of the sums
N(), not based on any combinatorial formulae. These N()
can then be stored in memory or computed on the fly. More
precisely, we describe polynomial methods for computing the
values of N() for the various constrained codes discussed in
the introduction.

III. POLYNOMIAL COMPLEXITY METHOD
FOR BC AND LRS CODES

In this part we consider the set 7,,(d1, 62, @, 8) of sequences
X[...Xp, x; over A, see (1). It is worth noting that the size
of this set grows exponentially. For example, for A = {-1, 1},
IT,(-1,1,-1,1)] = 2?1 So, our goal is to develop a sim-
ple method for calculating N(x;...x,) for r = 1,...,n for
X{...x, € Tu(61,02,@,B), because this is a key part of
the Cover encoding and decoding method (described in the
previous section).

Algorithm 1 Computation of N
1: Input: x;...x,
Output: N(x;...x,)
Create table S[i,jl,i=1,....n—r+1, j=01,...
Fill § with zeros
Z e D X
S[l,z,] « 1
fori—1ton—rdo
for k < 6, to 0, do
for a € A do
if 5; < k+a <6, then State S[i + 1,k + a] «
Sli+ 1,k+al+ S[i, k]
11: end if
12: end for
13: end for
14: end for
15 N« O
16: for i < a to 8 do
17: N«N+Sn-r+1,i]
18: end for

,02

R A A o

_.
4

First, let us give some comments to make the description
of the algorithm (denoted as Algorithm 1) clear. The key
observation is the following: the number of trajectories with
the prefix x;...x; depends only on the sum x; + ... + x;
and hence the algorithm does not need to store the word
X1 ...xx. This reduces the required memory from exponen-
tial to polynomial. The algorithm computes the number of

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 5, MAY 2025

trajectories (or words) that start with z, = ZLI x;. The table
Sli,jl.i=1,...,n—=r+1,j=90i,...,0, contains the numbers
of valid trajectories of type z,X,4+1... X4y I = 1,...,n—r,
j€{61,01 +1,...,02}). In general, when the algorithm goes
from r+i to r+i+ 1, we must extend all current trajectories
by the selected letter a € A and update the table S[,] with the
revised number of trajectories

Theorem 1: Algorithm 1 correctly computes the number of
words from T,(61, 02, @, 8) with the prefix x; ... x,,r < n, that
is N(xp...x,).

Proof: The algorithm sequentially computes the numbers of
words N(xi ...xga) when N(x;...x;) is given, considering all
words for which §; < Z'l X; < 02, i.0. in the set T;(d1, 52, @,),
(here xi,...,xx,a € A, i = r,r +1,...,n). Then, on line
18 N(x; ...x,) is computed for & and S.m

Let us consider a small example. Let A = {—1,+1}, n = 6,
x € T,(81,02,a,B), where 6; = 0,6, = 3, = 0,8 = 2 and
let the algorithm 1 be applied for calculation N(+1 —1 + 1).
Then z3 = 1, and the algorithm is carried out as follows:

0 0
0 1
SILI=| S 1=1,
0 1
1 0
0 3
SB. 1=, S 1=1,
0 2

Applying the last algorithm cycle from @ = 0 till 8 = 2 we
obtain N =240+ 3 =5 and, hence, N(+1 -1 + 1) =5.
Now let us estimate the complexity of the Cover method
of encoding and decoding if N(xj...x;) are calculated by
the algorithm described above. During decoding and encoding
the values N(xj...x;) are calculated and for any N() the
summation O(n) is required. So, taking into account that the
length of N() is up to O(n) we see that the total time (for
i=1,...,n=1in (2)) is O®#*(52—061))+ (8—a)). The required
memory size for S[,] is O(n?) cells of the length O(n), but
it is sufficient to store only two columns of the table S, and
hence the required memory is O(n?). Taking into account that
N(xp...x;) depends only on Zf;l x;, we see that there are
only (6, — 8; + 1) of different N() and all of them can be
calculated in advance and stored in O((6, — &;)n?) cells.

IV. ENERGY CONSTRAINTS

In [11] the so-called subblock energy-constrained codes
(SECC) and sliding window codes (SWCC) are considered
for the {0, 1} alphabet. To describe them, it will be convenient
to call the number of units in the word u as the weight u and
denote it by w(u).

SECC are binary sequences of length n = ml, which are
treated as a sequence of m [-bit sub-blocks (m and [are
integers, and in what follows, we consider the case where /
is a constant independent of n). The weight of each subblock
is at least @ and at most 8, where « and B,a < B, are some
integers. The set of sequences belonging to the same block is
Ti(a,B,a,B) (see (1)), and hence the algorithm presented in
the previous section can be applied.

Authorized licensed use limited to: Boris Ya Ryabko - Riabko. Downloaded on November 08,2025 at 04:37:08 UTC from IEEE Xplore. Restrictions apply.

RYABKO: GENERAL METHOD FOR THE DEVELOPMENT OF CONSTRAINED CODES

Sliding window constrained codes are n-bit words x ... X,
such that the weight of any [-bit subword x;;...x;4; is at
least @ and at most 3, i.e. @ < w(xjy;...xi47) < B (here i can
be any integer from [0, n —[], not necessarily a multiple of /).

So, the following problem of encoding is considered. There
is a set of sequences xi,...,x,, X; € {0, 1} and @ < ijf‘l x; <
B for any integer k € [1,...,n— [+ 1] and let denote the set
of such words by SWCC,(, a,f).

A. The Algorithm for Sliding Window-Constrained Codes

To simplify the description of the algorithm, we will use an
additional letter @ and hence the alphabet will be {0, 0, 1}. We
also assume that the weight of @ is 0. The algorithm uses the
table S[i,u], where i is an integer, i = 1,...,n—[+ 1 and u
is a word, u € {0,0, 1}\. (This table will be used to store the
number of trajectories.) Also we denote by v(v) the number
of the letters 0 in the word v. Note that the letter () is needed
only for the case r < .

Algorithm 2 Computation of N
1: Imput: x;...x,. Comment: x;...x, € SWCC,(,a,p).
Otherwise, N = 0.
Output: N(x;...x,)
for i — —-/+1to0do
X & 0
end for
Create table S[i,u],i=1,...,n—r—+1, ue{0,0,1}
Fill S with zeros
S [1, Xr—l41Xp=[42 - - - xr] —1
fori—1ton—rdo
for u € {0,0,1} do
V& UgUz ..., U
if w(v0) > a — v(v0) then
Sli+ 1,v0] « S[i + 1,v0] + ST[i, u]
end if
if w(vl) < then
Sli+ Lvl] « S[i+ 1,vl] + S[i, u]
end if
end for
end for
N0
. for u € {0, 1} do
N« N+ S[n—-rul
: end for

R A B SAE A d

L T O T S N S S g S
W20 % DR 2

Theorem 2: Algorithm 2 correctly computes
N(x1,...,x) (r < n), that is, the number of words with
prefix xi,...,x, from the set SWCC,(l, a,f).

Proof: When the window is “moved”, the algorithm sequen-
tially counts the number of words in S WCC;(l, @, 8), with the
prefix xi,...,x,, i = r,r+ 1,...,n, such that all words in
SWCCi(a,p) are counted. Then N(x;...x,) is computed in
line 21.m

Let us estimate the complexity of this algorithm. Table S,]
contains 3/(n+1) cells and the computation time is proportional
to the same value. It is clear that this algorithm can be
significantly simplified if @ is removed, but the asymptotic

3513

complexity estimate will be the same, so we will not describe
these simplifications.

V. THE METHOD FOR RLL CODES

Let codewords of an RLL code be n-letter words over an
alphabet A = {ay,...,an},m =22, and V = {v,..., v}, s > 1,
be the finite set of forbidden words, that is, any codeword
X1 ...X, does not contain any v € V as a subword. Denote the
set of such words by RLL,(V). (The set V is assumed to be
independent of n.) As before, we will use Cover’s method, and
the description of the algorithm will be reduced to computing
the numbers N(xj...x,), see the description in part 2. It is
worth noting that the described algorithm will be very close
to the algorithm for sliding window codes. In particular, we

extend the alphabet A = {ay,...,a,} to A’ ={0,ay,...,a,}.
A. The Algorithm for RLL Codes
Let us define
L =,u= ma%/x l,. 4)
Ve

The algorithm uses the table S[i, u], where i is an integer,
i=0,1,...,n—r+1 and u is a word, u € A’*.

Algorithm 3 Computation of N

1: Input: x;...x,. Comment: x; ...x, does not contain sub-
words from V. Otherwise, N = 0.

: Output: N(x;...x,)
: fori— —-pu+1to0do
X; 0
end for

Create table S[i,u],i=1,...,.n—r+1, ue A’#
. Fill S with zeros

ST Xy 1 Xpmpg2 - %] 1
fori—1ton—-rdo

10: for u e A’* do

for a e A’ do

R A A A T o e

—_
—_

12: A« true, w & upu3 ... uua
13: for ve V do

14 if wyj41...w, =v then
15: A « false,

16: end if

17: end for

18: if A = true then

19: S+ 1Lw]l«S[i+1,w]+ S[i,ul
20: end if

21: end for

22: end for

23: end for

24: N« 0

25:. for u € A* do
26: N—N+Sh-r+1,u]
27: end for

Theorem 3: Algorithm 3 correctly computes
N(x1,...,x,) (r < n), that is, the number of words with
prefix xi,...,x, from the set RLL,(V).

Proof: When the window is “moved” (in line 12), the
algorithm sequentially counts the number of words in RLL;(V),

Authorized licensed use limited to: Boris Ya Ryabko - Riabko. Downloaded on November 08,2025 at 04:37:08 UTC from IEEE Xplore. Restrictions apply.

3514

with the prefix xy,...,x,, i = r,r+1,...,n, such that all words
in RLL;(V) are counted. Then N(x; ... x,) is computed in line
25. []

VI. MULTIPLE CONSTRAINTS

Quite often certain data transmission and storage systems
require codes satisfying multiple constraints.Generally speak-
ing, sometimes such problems can be solved by performing
special combinatorial studies to find expressions for N() in the
Cover method, see, for example, [2], Chapter 6, [4], [13], [14],
[18], [19]. In this part, we show that the described methods
of directly computing the values of N() can be easily used in
the case of joint application of multiple constraints.

As an example, we consider the case where constraints on
the sums of sequence letters and RLL constraints are given
together. All other possible combinations of constraints (e.g.,
energy and RLL) are similar. So we consider the following
set T,,(01,02,,8), 01 < a < <6y, of sequences Xxj ... Xy, X;
from some alphabet A, see (1). Also there is a set with RLL
constrains, that is a set of forbidden words V = {v,..., v}, s >
1, and any codeword x;...x, does not contain any v € V
as a subword. (This set was denoted by RLL,(V)). So our
goal is to build the constrained code for the set of sequences
A = T,(1,0,a,8) N RLL,(V). As before, we will use the
Cover method and therefore only describe the computation of
the numbers N(x; ...x,). To do this, we combine Algorithm 1
and Algorithm 3 as follows.

The algorithm is designed to compute the number of tra-
jectories (or words) that belong to A. We consider the table
S[i, j,ul, where i = 1,...,n—r,j = 81,...,02, u € A™, (u
defined in (4)), A’ ={0,ay,...,a,}.

This algorithm is a combination of Algorithms 1 and 3. Its
correctness follows from Theorems 1 and 3.

VII. CONCLUSION

In this part we first will briefly evaluate the complexity
of the developed codes. First of all, we note that there are
many obvious simplifications of the described methods. Thus,
in all algorithms the table S[i, j] can contain only two rows
corresponding to i, the third and fourth algorithms can be
described without an extra letter (), etc. This was done to avoid
unnecessary small details and hence make the description
shorter and clearer.

Next, we briefly discuss asymptotic estimates of the memory
and time required for the developed algorithms (2). First of
all, we note that the Cover method requires O(n) summation
operations with O(n) integers of O(n)-bit length (because, as
we showed in the introduction, the number of trajectories
grows exponentially even in the simplest cases). So, the
running time and memory size of the Cover method is O(n?).

Now let us evaluate the complexity of computing the values
of N() used in the algorithms described above, but first note
that the following two ways of using these values are possible:
either the set of values N() can be calculated in advance, stored
and used several times for encoding and decoding different
X1 ...X,, or N() can be computed again for any x; ... x,. The
upper estimate can be obtained by assuming that 6; and J, in

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 5, MAY 2025

Algorithm 4 Computation of N

1: Imput: x;...x,, Output: N(x;...x,)

2: Create table S[i, jul, i = 1,....n—71, j = 81,...,02,
ueAt

3: Fill § with zeros

4: for i < —pu+11to 0do

5 xi <0

6: end for

7o zp = iy Xis STz Xy 1 Xtz - - X 1

8: fori—1lton—-r+1do

9 for j < 6, to 6, do

10: for a e A’ do

11: if 6 < j+a <6, then

12: A « true

13: else

14: A « false

15: end if

16: Ay < true, w < upusz...u,a

17: for ve V do

18: if wyj41...w, =v then

19: Ay « false

20: end if

21: end for

22: if 1,&A; = true then

23: Sli+1, j+a,w] « S[i+1, j+a,wl+SI[i, j,ul

24: end if

25: end for

26: end for

27: end for

28: N« 0

29: for j « a to 8 do
30: for u € A* do

31 N—N+Shn-r+1,jul
32: end for
33: end for

the algorithms are equal to O(n). In this case, the computation
time of N() values is O(n*) and the memory size is O(n?) bits,
assuming that the length of N() is O(n) bits.

The developed algorithms are not symmetric in the follow-
ing sense: If, for example, N(x; ... x;) is computed, then in all
described algorithms the length of summands increases from a
few bits to O(n) bits. The work [20] describes an algorithm for
the Cover method, where most of the operations are performed
on numbers of the same length, which significantly reduces
the complexity. It seems natural to reorganise the algorithms
developed above in a similar way in order to reduce the
complexity, but for this purpose a special new algorithm must
be developed.

Next we discuss the scope of the described method. The key
part of the Cover method is the computation of the number of
words with prefix x; ... xga if the number of words with prefix
X1 ...xx is known, that is, the computation of N(x; ... xza) if
N(xy...x) is given (here xy,...,x;,a € A), see (2). In all
the constrained code problems we have considered, we do
not store N(xj ... xy) for all words xj ... xy. Instead, when we
compute N(x; ...xa), we do not use the entire x; ... x; prefix,

Authorized licensed use limited to: Boris Ya Ryabko - Riabko. Downloaded on November 08,2025 at 04:37:08 UTC from IEEE Xplore. Restrictions apply.

RYABKO: GENERAL METHOD FOR THE DEVELOPMENT OF CONSTRAINED CODES

but only use the knowledge of a small summary of the prefix.
This is a key observation, since the required memory size then
decreases from exponential (IA[F) to at most polynomial. (Thus,
for constraints BC and RLC and A = {0, 1}, it is sufficient
to store one N(x;...x;) for all words x;...x; of the same
weight.)

The rest of the computations are based on dynamic pro-
gramming.

A natural question is how many constrained codes can be
realized by a similarly simple method. Let us consider this
question informally. Clearly, there are 2% subsets of {0, 1}".
The Kolmogorov complexity of almost all those subsets will
be 2"(1 + o(1)) according to the uniform distribution on the
subsets (see [21], [22]). In particular, this means that the size
of the program that would implement the Cover method must
be at least 2"(1 4 o(1)) for almost all these sets i.e., it grows
exponentially with n.

On the other hand, the above applications of the method
show that it works for many constrained sets if, informally
speaking, the description of these constraints is in some sense
short and simple. Perhaps this observation can be useful in
practice, but a formal treatment of this problem belongs to the
theory of complexity of algorithms.

REFERENCES

[1] K. A. S. Immink, “Innovation in constrained codes,” IEEE Commun.
Mag., vol. 60, no. 10, pp. 20-24, Oct. 2022.

[2] K. A. S. Immink, Codes for Mass Data Storage Systems. Denver, CO,
USA: Shannon Foundation, 2004.

(91
[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]

[19]

[20]
(21]

[22]

3515

K. A. S. Immink and J. H. Weber, “Very efficient balanced codes,” IEEE
J. Sel. Areas Commun., vol. 28, no. 2, pp. 188-192, Feb. 2010.

J. H. Weber, K. A. Schouhamer Immink, P. H. Siegel, and T. G. Swart,
“Perspectives on balanced sequences,” 2013, arXiv:1301.6484.

T. T. Nguyen, K. Cai, and K. A. S. Immink, “Efficient design of subblock
energy-constrained codes and sliding window-constrained codes,” IEEE
Trans. Inf. Theory, vol. 67, no. 12, pp. 7914-7924, Dec. 2021.

T. Cover, “Enumerative source encoding,” IEEE Trans. Inf. Theory,
vol. IT-19, no. 1, pp. 73-77, Jan. 1973.

A. Hareedy and R. Calderbank, “LOCO codes: Lexicographically-
ordered constrained codes,” IEEE Trans. Inf. Theory, vol. 66, no. 6,
pp. 3572-3589, Jun. 2020.

O. F. Kurmaeyv, “Constant-weight and constant-charge binary run-length
limited codes,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4497-4515,
Jul. 2011.

T. J. Lynch, “Sequence time coding for data compression,” Proc. IEEE,
vol. 54, no. 10, pp. 1490-1491, 1966.

L. D. Davisson, “Comments on ‘Sequence time coding for data
compression,”” Proc. IEEE, vol. 54, no. 12, p. 2010, Dec. 1966.

V. F. Babkin, “A method of universal coding with non-exponent labour
consumption,” Probl. Inform. Transmiss., vol. 7, pp. 13-21, Jun. 1971.
O. Ytrehus, “Upper bounds on error-correcting runlength-limited block
codes,” IEEE Trans. Inf. Theory, vol. 37, no. 3, pp. 941-945, May 1991.
O. F. Kurmaev, “Enumerative coding for constant-weight binary
sequences with constrained run-length of zeros,” Problems Inf. Trans-
miss., vol. 38, no. 4, Oct. 2002, Art. no. 249254.

B. Ryabko, “The fast enumeration of combinatorial objects,” 1998,
arXiv: ¢s/0601069.

T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York, NY, USA: Wiley, 2006.

M. Li and P. Vitnyi, An Introduction to Kolmogorov Complexity and Its
Applications. New York, NY, USA: Springer, Nov. 5, 2008.

(3]
[4]

(51

(6]

(71

(8]

B. H. Marcus, R. M. Roth, and P. H. Siegel, “An introduction to coding
for constrained systems,” Lect. Notes, Oct. 2001.

A. Hareedy, B. Dabak, and R. Calderbank, “The secret arithmetic
of patterns: A general method for designing constrained codes based
on lexicographic indexing,” IEEE Trans. Inf. Theory, vol. 68, no. 9,
pp. 5747-5778, Sep. 2022.

D. Bar-Lev, A. Kobovich, O. Leitersdorf, and E. Yaakobi, “Optimal
almost-balanced sequences,” 2024, arXiv:2405.08625.

E. Gorog, “Redundant alphabets with desirable frequency spectrum
properties,” IBM J. Res. Develop., vol. 12, no. 3, pp. 234-241, May
1968.

N. Alon, E. E. Bergmann, D. Coppersmith, and A. M. Odlyzko,
“Balancing sets of vectors,” IEEE Trans. Inf. Theory, vol. 34, no. 1,
pp- 128-130, Jan. 2010.

D. Knuth, “Efficient balanced codes,” IEEE Trans. Inf. Theory,
vol. IT-32, no. 1, pp. 51-53, Jan. 1986.

Boris Ryabko (Member, IEEE) has published about 200 articles on infor-
mation theory and its applications to cryptography, mathematical statistics,
biology, and linguistics. In 1979, he proved a theorem on the equivalence of
channel capacity and redundancy of a universal code. In 1980, he discovered
the “book stack” code, rediscovered in 1986 by Bentley, Slaytor, Tarjan,
and Wei under the name “move-to-front transform.” In 1986, he discovered
a logical connection between Hausdorff dimensionality and Kolmogorov
complexity. He also discovered optimal universal codes for various classes
of sources, including the “adaptive binary tree” data structure (published in
IEEE TRANSACTIONS ON INFORMATION THEORY in 1992) and later in 1994
published by Fenwick (now often called Fenwick tree or binary indexed tree).
In the 1980’s, biologist Zhanna Reznikova and he published several articles
in which they experimentally proved that some species of ants can transmit
up to six bits of information and can add and subtract small numbers using an
abstract language (not chemical tracks). The experiments are based on ideas
from information theory.

Authorized licensed use limited to: Boris Ya Ryabko - Riabko. Downloaded on November 08,2025 at 04:37:08 UTC from IEEE Xplore. Restrictions apply.

