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Abstract—In 1998 C. Cachin proposed an information-theoretic approach to steganography.
In particular, in the framework of this approach the so-called perfectly secure stegosystem
was defined, where messages that carry and do not carry hidden information are statistically
indistinguishable. There was also described a universal steganographic system, for which this
property holds only asymptotically, as the message length grows, while encoding and decoding
complexity increases exponentially. (By definition, a system is universal if it is also applicable
in the case where probabilistic characteristics of messages used to transmit hidden information
are not known completely.)
In the present paper we propose a universal steganographic system where messages that carry
and do not carry hidden information are statistically indistinguishable, while transmission rate
of “hidden” information approaches the limit, the Shannon entropy of the source used to “em-
bed” the hidden information.
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1. INTRODUCTION

Steganographic data transmission systems are designed to “secretly” transmit messages “hidden”
in openly transmitted data (such as e-mail messages, digital photos, films, etc.). In other words,
the aim of steganography is to transmit data protected from unauthorized access (e.g., encrypted)
in such a way that the very fact of transmission is hidden. This condition is formulated as follows:
messages that carry and do not carry hidden information should be subject to the same probability
distribution, being therefore statistically indistinguishable [1].

In many cases of using stegosystems, the probability distribution law of messages in which the
hidden information is “embedded” is not known precisely; in the case where these messages are
digital photos, films, music, electronic correspondence, SMS or ICQ messages, etc., the distribution
law, apparently, cannot be known precisely. Therefore, the problem (considered in [1]) of construct-
ing so-called universal stegosystems—where the probability distribution law of messages in which
hidden information is “embedded” is not known, but symbols generated by the source are a priori
known to be identically distributed and independent—seems quite natural.

Here is some notation used in what follows. We assume that there is a source of public mes-
sages µ, which generates i.i.d. random variables that take values in some (possibly, infinite) alpha-
bet A. There are two parties, Alice and Bob, and Alice wants to use this source to secretly transmit
messages that are sequences of symbols in the alphabet B = {0, 1} generated independently and
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equiprobably. We denote the latter source by ω and hereafter refer to it as a source of secret mes-
sages. This model of a source of secret messages is in fact traditional since usually it is assumed that
secret messages are already encrypted by Alice using a key that is known to her and to Bob only.
If Alice uses the Vernam cipher, then the encrypted message consists of equiprobable and indepen-
dent symbols; if modern block or stream secret-key ciphers are used, then the encrypted sequence
must “resemble” a chain of equiprobable and independent binary symbols (the “resemblance” may
mean indistinguishability in polynomial time or may be justified by experimental statistical data,
which are available for all modern ciphers; for details, see, e.g., [2,3]). Besides Alice and Bob, there
is one more party, Eve, who reads all messages transmitted from Alice to Bob and tries to find
whether the messages contain any hidden information. We note that if messages that contain and
do not contain embedded secret information are subject to the same probability distribution law,
then Eve (as well as anybody else) is unable to distinguish between such messages. Due to this
property, such systems were called perfectly secure in [1].

For the described model, [1] proposed a construction of a universal stegosystem where a sequence
of symbols generated by a source of secret messages is divided into subwords (blocks) of some length
m, and to each block there is assigned a certain word of a fixed length n(m) in the alphabet A
in such a way that the sequence of obtained symbols is subject to a probability distribution that
approaches the (unknown) distribution µ (recall that µ is the distribution of messages that contain
no hidden secret information). It is important to note that, first, though the probability distribution
of messages of the stegosystem converges to µ as the message length n grows, this convergence is
not uniform (with respect to the set of all probability distributions µ for a fixed alphabet A), and
second, the encoder and decoder memory of this stegosystem grows exponentially with n. These
two reasons make the stegosystem from [1] practically inapplicable. In [4, 5] the approach and
results of [1] were used to construct and analyze stegosystems that are in this or that sense close
to but not perfectly secure.

In this paper we propose a novel construction of a universal stegosystem free of drawbacks of
the method of [1]: in our construction messages that carry and do not carry hidden information
are statistically indistinguishable for any message length; i.e., the system is perfectly secured.
Furthermore, we show that the transmission rate of hidden information is bounded by a limit
value, the Shannon entropy of the source µ, and find constructions of stegosystems where this rate
approaches the limit. It is important to note that we propose a simple encoding and decoding
algorithm, whose complexity grows polynomially as the transmission rate of hidden information
tends to its limit, the Shannon entropy.

2. THE SIMPLEST UNIVERSAL STEGOSYSTEM

To explain the main idea of the proposed construction, we start describing the system with the
simplest case where not only the source ω of secret messages is binary but also the source µ of
public messages generates a sequence of independent symbols of the binary alphabet A = {a, b}.
Assume that Alice has to transmit a (secret) sequence y∗ = y1y2y3 . . . of symbols generated by a
source ω of independent and equiprobable binary symbols, and let a sequence x∗ = x1x2x3 . . . of
symbols generated by µ be given. For instance, let

y∗ = 0110 . . . , x∗ = aababaaaabbaaaaabb . . . . (1)

The sequences x∗ and y∗ are encoded into a new sequence X, transmitted to Bob, such that,
first, Bob can uniquely reconstruct the (secret) sequence y∗ given X, and second, the probability
distribution of symbols in X is the same as in x∗ (in other words, X and x∗ are statistically
indistinguishable). We divide the construction of X given x∗ and y∗ into stages. First we divide

PROBLEMS OF INFORMATION TRANSMISSION Vol. 45 No. 2 2009



186 B.YA. RYABKO, D.B. RYABKO

all symbols of X∗ into pairs and for convenience denote all possible pairs as follows:

aa = u, bb = u, ab = v0, ba = v1.

For instance, the sequence in (1) can be represented as

x∗ = aa ba ba aa ab ba aa aa bb . . . = uv1v1uv0v1uuu . . .

(spaces are put for the convenience of reading only). Then we form the sequence X as follows: all
pairs that correspond to u are left unchanged, and all pairs that correspond to vk are successively
changed into pairs corresponding to vy1vy2vy3 . . . . In the considered example (1), we obtain the
following sequence X:

X = aa ab ba aa ba ab aa aa bb . . . .

Decoding is obvious: Bob cuts the received sequence of symbols X into pairs and replaces the pairs
ab and ba with 0 and 1, respectively, simply skipping other pairs of symbols.

Properties of this method, which we denote by St2, are characterized by the following almost
obvious fact.

Claim. Let us be given a source µ generating i.i.d. random variables that take values in the
alphabet A = {a, b}. Let this source be used for secret transmission of messages that consists
of independent and equiprobable binary symbols according to the described method St2. Then the
probability distribution of messages output by the stegosystem is the same as for the source µ.

We do not present a quite obvious proof of this claim since it is a particular case of Theorem 1
given below.

It is interesting to note that a similar construction was used by von Neumann when construct-
ing a sequence of equiprobable binary symbols (see [6, 7]). His method, as well as the described
stegosystem, was based on the fact that occurrence probabilities of ab and ba are the same.

The above-described construction can easily be extended to the case of an arbitrary alphabet A.
Indeed, define any order on the set of symbols of A. (Here it should be noted that A may consist
of graphics files or photographic images, but in any case these or similar objects are represented
in data transmission systems as binary words and therefore can be ordered, say, lexicographically.)
As above, to transmit a (secret) sequence y∗ = y1y2y3 . . . of symbols generated by a source ω
of independent and equiprobable binary symbols, a given sequence x∗ = x1x2x3 . . . of symbols
generated by a source µ of independent symbols, xi ∈ A, is divided into blocks of length 2. If a block
x2i−1x2i consists of identical symbols, it is not used for encoding and is transmitted unchanged;
if a block x2i−1x2i consists of different symbols, say α and β, then it is used to encode the current
symbol, which we denote by yk. Without loss of generality, assume that α < β for a given ordering;
then the transmitted sequence contains the word αβ if yk = 0 and the word βα if yk = 1. Decoding
is obvious: if a pair of symbols X2i−1X2i in the encoded sequence consists of identical symbols, it
does not encode a symbol of y∗ = y1y2y3 . . . . If X2i−1X2i are different and X2i−1 < X2i (for a given
ordering), then the current secretly transmitted symbol yk is 0; otherwise, yk = 1. We denote this
stegosystem by St2(A).

Theorem 1. Let us be given a source µ generating i.i.d. random variables that take values
in an alphabet A, and let this source be used for hidden transmission of messages consisting of
independent and equiprobable binary symbols with the help of the stegosystem St2(A). Then the
probability distribution of messages output by the stegosystem is the same as for the source µ, and
the average number of transmitted symbols per secretly transmitted bit is 2/

(
1− ∑

a∈A
µ(a)2

)
.

Proof. Take arbitrary α, β ∈ A and i. Let us show that

P (X2i−1X2i = αβ) = µ(αβ).
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If α = β, then P (X2i−1X2i) = P (x2i−1x2i); i.e., the probabilities in the sequence that contains
hidden information and in the original sequence coincide. Now let α < β. Then

P (X2i−1X2i = αβ) = P (yk = 0)P (x2ix2i+1 = αβ) + P (yk = 0)P (x2ix2i+1 = βα)
= 1/2µ(α)µ(β) + 1/2µ(β)µ(α) = µ(α)µ(β).

The case β > α is considered similarly. The second claim is obtained by direct computation of the
probability that two symbols in a block are identical. �

Note that in practice, when openly transmitted symbols of A are, e.g., graphics files and each file
is practically unique, the alphabet A is enormous, so the average number of transmitted symbols
(graphics files) per secretly transmitted bit is approximately 2.

3. GENERAL CONSTRUCTION OF A UNIVERSAL STEGOSYSTEM

Now we describe the general method. Assume, as above, that it is required to transmit a (secret)
sequence y∗ = y1y2y3 . . . of symbols generated by a source ω of independent and equiprobable
binary symbols, and let us have a sequence x∗ = x1x2x3 . . . of symbols generated by a source µ of
independent symbols, where each symbol xi belongs to A. In the proposed stegosystem, we divide
the sequence x∗ into blocks of length n, where n > 1 is a parameter of the method.

Each block is used to encode several symbols of y∗ (for example, in the stegosystem St2(A) de-
scribed above, each block of two symbols encodes either one symbol of y∗ or no symbols). However,
in the general case there arises a problem that does not occur in the case of a two-symbol block.
Namely, this is the problem of coordination of probabilities of blocks in x∗ and y∗. The point is
that probabilities of words generated by the source of secret symbols are multiples of powers of 2,
whereas the number of equiprobable blocks need not satisfy this condition.

Here is a precise description. Denote by u the first n symbols of x∗, u = x1 . . . xn, and let νu(a)
be the number of occurrences of a symbol a in u. By definition, the set Su consists of all words of
length n in which the occurrence frequency of each symbol of the alphabet A is the same as in the
word u; i.e., Su consists of words of the frequency class of u. (To clarify the sense of considering this
set, note that probabilities of all of its elements are the same, since µ is a source of i.i.d. random
variables.) Let on Su there be defined an ordering (say lexicographic) known to Alice and Bob,
and let Su = {s0, s1, . . . , s|Su|−1} for this ordering.

Denote m = �log2|Su|�, where �y� is the largest integer not greater than y. Consider the binary
representation of |Su|:

|Su| = (αm, αm−1, . . . , α0),

where αm = 1 and αj ∈ {0, 1}, m > j ≥ 0. In other words,

|Su| = αm2m + αm−12m−1 + αm−22m−2 + . . . + α0, αm = 1.

Denote by δ(u) the order number of u (for a given ordering on Su), and let (λm, λm−1, . . . , λ0)
be the binary representation of δ(u). Let j(u) be the largest of numbers with αj 
= λj. Alice,
having found j(u), reads j(u) symbols of the sequence of secretly transmitted symbols y∗; let these
symbols viewed as a binary representation define a number τ . Alice finds in Su a word v whose
number in Su is

∑
j(u)<s≤m

αs2s + τ and transmits v to Bob (or, in other words, v is put into the

output sequence of the encoder).
In decoding, Bob, having received the word v, determines the set Sv (which coincides with Su);

in the same way as in encoding, finds j(v) (for u and v they coincide: j(u) = j(v)) and τ ; and
then, from τ , obtains the j(v) encoded symbols. All subsequent n-tuples are encoded by Alice and
decoded by Bob in the same way. We denote this system by Stn(A).
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Consider an example illustrating all stages of computation. Let A = {a, b, c}, n = 3, and
u = bac. Then Su = {abc, acb, bac, bca, cab, cba}, |Su| = 6, m = 2, α2 = 1, α1 = 1, α0 = 0,
δ(u) = 2, λ2λ1λ0 = 010, and j(u) = 2. Having computed these values, Alice reads j(u) (= 2)
secretly transmitted symbols of y∗. Let, for definiteness, these symbols be 11. After that, Alice finds
j(v) = 2 and the number of the word v in Sv (= Su), which in this case is

∑
2<s≤2

αs2s+τ = 0+3 = 3.

The corresponding word is v = bca. Bob, having received this word, finds Sv (= Su) and τ = 3,
and obtains from the value of τ the transmitted secret symbols 11.

Theorem 2. Let us be given a source µ generating i.i.d. random variables that take values
in an alphabet A, and let this source be used for secret transmission of messages that consist of
independent and equiprobable binary symbols according to the above-described method Stn(A) with
block length n, n ≥ 2. Then we have the following statements:

(i) Output messages of the stegosystem are subject to the distribution µ (i.e., distributions of the
input and output sequence of the encoder are the same, and therefore the system is perfectly
secured);

(ii) The average number of hidden symbols per source symbol Ln satisfies the inequality

Ln ≥ 1
n

( ∑
u∈An

µ(u) log
n!∏

a∈A
νu(a)!

− 2

)
, (2)

where µ(u) is the probability that µ generates a word u, and νu(a) is the number of occurrences
of a symbol a in u;

(iii) If the alphabet A is finite and the block length n tends to infinity, then the average number Ln

of hidden symbols per source symbol tends to the Shannon entropy h(µ) = − ∑
a∈A

µ(a) log µ(a)
of the message source.

Proof. To prove (i), it suffices to show that for each n-tuple u in the input (original) sequence,
the occurrence probability of any word v ∈ Su in the encoding sequence equals 1/|Su|. The proof is
based on the total probability formula. As is seen from the description, the probability that j, j =
0, . . . ,m, is read from the sequence of secretly transmitted symbols equals 2j/|Su| if αj = 1 (since
the number of the word u in Su must satisfy the inequality

∑
j(u)<s≤m

αs2s ≤ δ(u) <
∑

j(u)≤s≤m
αs2s).

For definiteness, let u and v be the first words in the original and encoded sequences. Then

P (X1 . . . Xn = v) = P
(
u ∈ Sv and j(v) = j(u)

)
2−j(v).

Here the last factor is the probability to read, from the sequence y∗ of secretly transmitted symbols,
a binary word of length j(v) that encodes v. This implies

P (X1 . . . Xn = v) = P (u ∈ Sv)P
(
j(v) = j(u) |u ∈ Sv

)
2−j(v)

= |Sv|µ(u)
(
2j(v)/|Sv |

)
2−j(v) = µ(u).

Since u and v belong to the same frequency class, this equality shows that P (X1 . . . Xn = v) = µ(v).
To prove (ii), define the quantity φ = 2m/|Su| and denote by L(Su) the average number of

secretly transmitted symbols per word of Su:

L(Su) =
1

|Su|

m∑
i=0

αii2i.
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We have

L(Su) =
1

|Su|

m∑
i=0

αii2i =
1

|Su|

(
m

m∑
i=0

αi2i −
m∑

i=0

αi2i(m− i)

)

= m−
(
2m

m∑
k=0

kαm−k2−k

)
> m− 2m+1/|Su| = m− 2/φ = log |Su| − log φ− 2/φ.

One can check by directly finding the maximum that log φ+2/φ ≤ 2 for φ ∈ [1, 2]. Hence, L(Su) >

log |Su|−2. This, together with the equality |Su| =
n!∏

a∈A

νu(a)!
, implies statement (ii) of the theorem.

Statement (iii) follows from the fact widely known in information theory that the inequality
h(µ)−δ < log |Su|/n < h(µ)+δ holds for any δ > 0 with probability tending to 1 (see, e.g., [8,9]). �

In many real-world stegosystems, the alphabet A is enormous (say consists of all possible digital
photos of a given image format or all e-mail messages). In this case, asymptotic behavior of Ln for
a fixed n and |A| → ∞ is of interest. To treat this case precisely, we use the notion of minimum
entropy (or minentropy), which is defined as

H∞(µ) = min
a∈A

{− log µ(a)}. (3)

Corollary. If the conditions of Theorem 2 are fulfilled, the block length n is finite, and the
number of symbols of A tends to infinity in such a way that H∞(µ) → ∞, then Ln satisfies

log(n!)/n ≥ Ln ≥ (log(n!)− 2)/n,

which is equivalent for large n to the asymptotic equality

Ln = log n(1 + o(n)).

This is easily deduced from the fact that the number of permutations of n elements is n! and
from statement (ii) of Theorem 2.

Now let us briefly discuss the complexity of the stegosystem Stn(A). Storing all words of the
set Su would require of the order of 2n log |A| memory bits, which of course cannot be practically
realized for large n. In [10], a fast enumeration algorithm is proposed, which makes it possible to
find the number of a block of any word u in Su in the encoding and to perform the inverse operation
in the decoding with O(logconst n) operations per symbol and with memory size of O(n log3 n) bits.

It should be noted that the main idea exploited in the construction of the stegosystem Stn(A) can
be applied to more general sources of public messages than sources that generate i.i.d. messages.
Indeed, the only property of such sources that we use consists in the fact that all blocks of messages
obtained from each other by permutations are equiprobable. If the source of public messages has
the property that at some step some messages have the same (conditional) probability, then, if the
source generates one of these messages, we can transmit secret information by replacing it with one
of the equiprobable messages. Messages that do not belong to any group of equiprobable messages
are not used for encoding secret information. Sources that generate i.i.d. messages is only a simple
and significant example of encoding of this type.

The authors are deeply grateful to G.A. Kabatiansky, who suggested a considerable simplification
of the method described in the paper and a simple proof of the estimate in Theorem 2.
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