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Abstract

We show that Kolmogorov complexity and such its estimators as universal codes (or data compression methods) can be applied
for hypotheses testing in a framework of classical mathematical statistics. The methods for identity testing and nonparametric testing
of serial independence for time series are suggested.
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1. Introduction

The Kolmogorov complexity, or algorithmic entropy, was suggested in [14] and was investigated in numerous papers;
see for review [17]. Nowadays this notation plays important role in the theory of algorithms, information theory, artificial
intelligence and many other fields, and is closely connected with such deep theoretical issues as definition of randomness,
logical basis of probability theory, randomness and complexity (see [8,17,19,26,30–32,35]). In this paper we show that
Kolmogorov complexity can be applied to hypotheses testing in the framework of mathematical statistics. Moreover,
we suggest using universal codes (or methods of data compression), which are estimations of Kolmogorov complexity,
for testing. In other words, in this approach the purpose is to try and apply an ostensibly theoretical theory based
on the uncomputable notion of Kolmogorov complexity in the practical domain by replacing the ideal “Kolmogorov
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compressor” by a real-life compressor. It is important to note that such a replacing was used in [2,16] and created a
new and rapidly growing line of investigations in clustering and classification.

In this paper we consider a stationary and ergodic source (or process), which generates elements from a finite set
(or alphabet) A and two problems of statistical testing. The first problem is the identity testing, which is described
as follows: a hypotheses Hid

0 is that the source has a particular distribution � and the alternative hypothesis Hid
1 that

the sequence is generated by a stationary and ergodic source, which differs from the source under Hid
0 . One particular

case where the source alphabet A = {0, 1} and the main hypothesis Hid
0 is that a bit sequence is generated by the

Bernoulli source with equal probabilities of 0’s and 1’s is applied to the randomness testing of random number and
pseudorandom number generators. It is worth noting that this particular case is very close, in spirit, to the problem
of randomness definition and the obtained test looks like the Martin-Löf one. The main difference is as follows: in
contrast to [17,19,30,35] we consider the alternative hypothesis that the sequence is generated by a stationary and
ergodic source, which, on the one hand, is natural for mathematical statistics and, on the other hand, gives a possibility
to obtain explicit, nonasymptotical results.

The second problem is a generalization of the problem of nonparametric testing for independence of time series. More
precisely, we consider two following hypotheses: Hind

0 is that the source is Markovian, whose memory (or connectivity)
is not larger than m, (m�0), and the alternative hypothesis Hind

1 that the sequence is generated by a stationary and
ergodic source, which differs from the source under Hind

0 . In particular, if m = 0, this is the problem of testing for
independence of time series. This problem is well known in mathematical statistics and there is an extensive literature
dealing with nonparametric independence testing.

In both cases the testing should be based on a sample x1 . . . xt generated by the source.
We suggest statistical tests for identity testing and nonparametric testing of serial independence for time series,

which are based on Kolmogorov complexity and such estimates of it as universal codes. It is important that practically
used so-called archivers can be used for suggested testing, because they can be considered as methods for estimation
of Kolmogorov complexity.

This paper is intended to show that the results of theory of Kolmogorov complexity can be fruitfully applied to classic
problems of mathematical statistics, which, at first glance, are far from the theory of algorithms. The applications of
this approach to some other problems of mathematical statistics, its extension to the case where the alphabet is a metric
space and additional examples of applications will be published in statistical literature [27,28] (see also [29], where
the first such test was described for one particular case).

The outline of the paper is as follows. The next part contains necessary definitions and some information about
universal codes and their applications. The parts three and four are devoted to the identity testing and testing of serial
independence, correspondingly. The fifth part contains results of experiments, where the suggested method of identity
testing is applied to pseudo-random number generators. All proofs are given in Appendix.

2. Definitions and preliminaries

First, we define stochastic processes (or sources of information). Consider an alphabet A = {a1, . . . , an} with n�2
letters and denote by At and A∗ the set of all words of length t over A and the set of all finite words over A, correspondingly
(A∗ = ⋃∞

i=1 Ai). Let � be a source which generates letters from A. Formally, � is a probability distribution on the set
of words of infinite length or, more simply, � = (�t )t �1 is a consistent set of probabilities over the sets At ; t �1. By
M∞(A) we denote the set of all stationary and ergodic sources, which generate letters from A. Let Mk(A) ⊂ M∞(A)

be the set of Markov sources with memory (or connectivity) not greater than k, k�0. More precisely, by definition
� ∈ Mk(A) if

�(xt+1 = ai1/xt = ai2 , xt−1 = ai3 , . . . , xt−k+1 = aik+1 , . . .)

= �(xt+1 = ai1/xt = ai2 , xt−1 = ai3 , . . . , xt−k+1 = aik+1) (1)

for all t �k and ai1 , ai2 , . . . ∈ A. By definition, M0(A) is the set of all Bernoulli (or i.i.d.) sources over A and
M∗(A) = ⋃∞

i=0 Mi(A) is the set of all finite-memory sources.
Now we define codes and Kolmogorov complexity. Let A∞ be the set of all infinite words x1x2 . . . over the alphabet

A. A data compression method (or code) � is defined as a set of mappings �n such that �n : An → {0, 1}∗, n = 1, 2, . . .

and for each pair of different words x, y ∈ An �n(x) �= �n(y). Informally, it means that the code � can be applied for
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compression of each message of any length n over alphabet A and the message can be decoded if its code is known.
It is also required that each sequence �n(u1)�n(u2) . . . �n(ur), r �1, of encoded words from the set An, n�1, can be
uniquely decoded into u1u2 . . . ur . Such codes are called uniquely decodable. For example, let A = {a, b}, the code
�1(a) = 0, �1(b) = 00, obviously, is not uniquely decodable. It is well known that if a code � is uniquely decodable
then the lengths of the codewords satisfy the following inequality (Kraft inequality): �u∈An2−|�n(u)| �1, see, e.g. [6].
(Here and below |v| is the length of v, if v is a word and the number of elements of v if v is a set.) It will be convenient
to reformulate this property as follows:

Claim 1. Let � be a uniquely decodable code over an alphabet A. Then for any integer n there exists a measure �� on
An such that

|�(u)|� − log ��(u) (2)

for any u from An. (Here and below log ≡ log2.)
(Obviously, the claim is true for the measure

��(u) = 2−|�(u)|/�u∈An2−|�(u)|).

In this paper we will use the so-called prefix Kolmogorov complexity, whose precise definition can be found in
[8,17]. Its main properties can be described as follows. There exists a uniquely decodable code � such that (i) there
is an algorithm of decoding (i.e. there is a Turing machine, which maps �(u) to u for any u ∈ A∗) and (ii) for any
uniquely decodable code �, whose decoding is algorithmically realizable, there exists a constant C� that

|�(u)| − |�(u)| < C� (3)

for any u ∈ A∗. The prefix Kolmogorov complexity K(u) is defined as the length of �(u): K(u) = |�(u)|. The code
� is not unique, but the second property means that codelengths of two codes �1 and �2, for which (i) and (ii) is true,
are equal up to a constant: ||�1(u)| − |�2(u)|| < C1,2 for any word u (and the constant C1,2 does not depend on u, see
(3)). So, K(u) is defined up to a constant.

In what follows we call this value “Kolmogorov complexity” and uniquely decodable codes just “codes”.
We can see from (ii) that the code � is asymptotically (up to the constant) the best method of data compression,

but it turns out that there is no algorithm that can calculate the codeword �(u) (and even K(u)). That is why the
code � (and Kolmogorov complexity) cannot be used for practical data compression directly. On the other hand,
so-called universal codes can be realized and, in a certain sense, can be used instead of the optimal code �, if they
are applied for compression of sequences generated by any stationary and ergodic source. For their description we
recall that (as it is known in Information Theory) sequences x1 . . . xt , generated by a source p, can be “compressed”
till the length − log p(x1 . . . xt ) bits and, on the other hand, there is no code � for which the average codeword
length (�x1...xt∈At p(x1 . . . xt )|�(x1 . . . xt )|) is less than −�x1...xt∈At p(x1 . . . xt ) log p(x1 . . . xt ). The universal codes
can reach the lower bound − log p(x1 . . . xt ) asymptotically for any stationary and ergodic source p with probability
1. The formal definition is as follows: a code � is universal if for any stationary and ergodic source p

lim
t→∞ t−1(− log p(x1 . . . xt ) − |�(x1 . . . xt )| = 0 (4)

with probability 1. So, informally speaking, universal codes estimate the probability characteristics of the source p and
use them for efficient “compression”.

It will be seen that the universal codes play an important role in the suggested tests, that is why we briefly mention
a history of their discovery and applications to mathematical statistics.

It is interesting that the first universal code (for the set of Bernoulli sources) was briefly described by Kolmogorov
in the same paper, where he defined the algorithmic complexity [14] (the same code was independently suggested and
investigated by Fitingof in [5]). Then the theory of universal codes was developed in numerous papers [4,12,23,24] (see
also review in [15]) and now there are many efficient algorithms of data compression which are based on universal codes.
As a matter of fact, the theory of universal coding belongs to Information Theory and, at the same time, mathematical
statistics, that is why it is not surprising that results of theory of universal coding have been efficiently applied to
problems of prediction [9,11,22,25,26], classification [7,33], estimation of the number of states of a finite-state source
[34], estimation of the order of a Markov chain [3,20] and some other problems of mathematical statistics.
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We would like to emphasize that, in contrast to all mentioned approaches, we consider the main model of the
hypothesis testing where there are two hypotheses and the Type I error is upper bounded (by a small number), see
for definition [10] or any other textbook in mathematical statistics. Our approach gives a possibility to use a length of
codeword of a real-life compressor as a statistical test in a framework of this main model of the mathematical statistics.
In contrast to our approach, the papers [7,33] develop asymptotical estimations of the statistical errors using different
models of hypothesis testing. To our knowledge, the approach, developed in this paper, was not known before the paper
[29] was published.

3. Identity testing

Now we consider the problem of testing Hid
0 against Hid

1 . Let the required level of significance (or a Type I error) be
�, � ∈ (0, 1). (By definition, the Type I error occurs if H0 is true, but the test rejects H0, and, vice versa, the Type II
error occurs if H1 is true, but the test rejects it.) We describe a statistical test which can be constructed based on any
code �.

The main idea of the suggested test is quite natural: compress a sample sequence x1 . . . xn by a code �. If the length
of codeword (|�(x1 . . . xn)|) is significantly less than the value − log �(x1 . . . xn), then Hid

0 should be rejected. The
main observation is that the probability of all rejected sequences is quite small for any �, that is why the Type I error
can be made small. The precise description of the test is as follows: the hypothesis Hid

0 is accepted if

− log �(x1 . . . xn) − |�(x1 . . . xn)|� − log �. (5)

Otherwise, Hid
0 is rejected. We denote this test by �(n)

�,�,�.

Theorem 1. (i) For each distribution �, � ∈ (0, 1) and a code �, the Type I error of the described test �(n)
�,�,� is not

larger than �.

(ii) If, in addition, � is a finite-memory stationary and ergodic process over A∞ (i.e. � ∈ M∗(A)) and � is a universal
code, then the Type II error of the test �(n)

�,�,� goes to 0, when n tends to infinity.

Remarks. The suggested tests is deeply connected with theory of Kolmogorov complexity and its applications.

First, in fact, the described test (5) coincides with the Martin-Löf one. Indeed, the universal �-Martin-Löf test,
in a computable approximation based on the compressor � inducing a probability mass function ��(x1 . . . xn) =
2−|�(x1...xn)| is as follows: if

log(��(x1 . . . xn)/�(x1 . . . xn))� − log �,

then H0, else H1; see [17,19]. Obviously, it is the same inequality as (5).
Second, the Kolmogorov complexity can be used instead of the length of a code in the described test (5). Namely,

let K
(n)
�,� be the following test: the hypothesis Hid

0 is accepted if − log �(x1 . . . xn) − K(x1 . . . xn)� − log �, otherwise,
Hid

0 is rejected. Theorem 1 is valid for this test, too.

4. Testing of serial independence

First, we give some additional definitions. Let v be a word v = v1 . . . vk, k� t, vi ∈ A. Denote the rate of a
word v occurring in the sequence x1x2 . . . xk , x2x3 . . . xk+1, x3x4 . . . xk+2, . . . , xt−k+1 . . . xt as 	t (v). For example, if
x1 . . . xt = 000100 and v = 00, then 	6(00) = 3. Now we define for any k�0 a so-called empirical Shannon entropy
of order k as follows:

h∗
k(x1 . . . xt ) = − 1

(t − k)

∑
v∈Ak

	̄t (v)
∑
a∈A

(	t (va)/	̄t (v)) log(	t (va)/	̄t (v)), (6)

where k < t and 	̄t (v)=∑a∈A 	t (va). In particular, if k = 0, we obtain h∗
0(x1 . . . xt )= −(1/t)

∑
a∈A 	t (a) log(	t (a)/t).
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Let, as before, Hind
0 be that the source � is Markovian with memory (or connectivity) not greater than m, (m�0),

and the alternative hypothesis Hind
1 be that the sequence is generated by a stationary and ergodic source, which differs

from the source under Hind
0 . The suggested test is as follows.

Let � be any code. By definition, the hypothesis Hind
0 is accepted if

(t − m)h∗
m(x1 . . . xt ) − |�(x1 . . . xt )|� log(1/�), (7)

where � ∈ (0, 1). Otherwise, Hind
0 is rejected. We denote this test by Υ t

�,�,m
.

Theorem 2. (i) For any distribution � and any code � the Type I error of the test Υ t
�,�,m

is less than or equal to
�, � ∈ (0, 1).

(ii) If, in addition � is a stationary and ergodic process over A∞ and � is a universal code, then the Type II error of
the test Υ t

�,�,m
goes to 0, when t tends to infinity.

Comment: If we use Kolmogorov complexity K(x1 . . . xn) instead of the length of the code |�(x1 . . . xt )|, the obtained
test will have the same properties.

5. Experiments

We applied the described method of identity testing to pseudo-random number generators. More precisely, we
denote by U a source, which generates equiprobable and independent symbols from the alphabet {0, 1} and consider
the hypothesis Hid

0 that a sequence is generated by U.
We have taken linear congruent generators (LCG), which are defined by the following equality:

Xn+1 = (A ∗ Xn + C) mod M,

where Xn is the nth generated number [13]. Each such generator we will denote by LCG(M, A, C, X0), where X0
is the initial value of the generator. We considered the four following LCG: L1 = LCG(108 + 1, 23, 0, 47594118),

L2 = LCG(231, 216 + 3, 0, 1), L3 = LCG(232, 134775813, 1, 0) and L4 = LCG(232, 69069, 0, 1).

In our experiments we extracted an eight-bit word from each generated Xi using the following algorithm. Firstly,
the number � = �M/256	 was calculated and then each Xi was transformed into an 8-bit word X̂i as follows:

X̂i = �Xi/256	 if Xi < 256�
X̂i = empty word if Xi �256�

}
(8)

Then a sequence was compressed by the archiver ACE v 1.2b (see http://www.winace.com/). Experimental data about
testing of four LCGs are given in Table 1.

So, we can see from the first line of Table 1 that the 400 000-bit sequence generated by L1 and transformed according
to (8), was compressed to a 390 240-bit sequence. (Here 400 000 is the length of the sequence after transformation.) If
we take the level of significance, say, 0.001 (� = 0.001) and take into account that 0.001�2−9760 and apply the test
�(400 000)

U,�,� , (� = ACE v 1.2b), the hypothesis H0 should be rejected, see Theorem 1 and (5). Analogously, the second

line of the table shows that the 8 000 000-bit sequence generated by L2 cannot be considered as random. (Indeed, Hid
0

should be rejected because the level of significance 0.001 is greater than 2−202 016.) On the other hand, the suggested
test accepts Hid

0 for the sequences generated by the two latter generators, because the lengths of the “compressed”
sequences increased.

Table 1
Results of experiments

Generator/length (bits) 400 000 8 000 000
L1 390 240 7 635 936
L2 Extended 7 797 984
L3 Extended Extended
L4 Extended Extended
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The obtained information corresponds to the known data about the generators mentioned above. Thus, it is shown
in [13] that L1 and L2 are bad, whereas L3 and L4 were investigated in [21,18], correspondingly, and are regarded as
good. So, we can see that the suggested testing is quite efficient.

Some other examples of application of the identity testing and serial independence testing are described in [28,29]
and show that the suggested method can be useful in practice.

Appendix

The following well-known inequality, whose proof can be found in [6], will be used in proofs of both theorems.

Lemma. Let p and q be two probability distributions over some alphabet B. Then
∑

b∈B p(b) log(p(b)/q(b))�0 with
equality if and only if p = q.

Proof of Theorem 1. Let C� be a critical set of the test �(n)
�,�,�, i.e. by definition, C� = {u : u ∈ At& − log �(u) −

|�(u)| > − log �}. Let �� be a measure for which the Claim 1 is true. We define an auxiliary set

Ĉ� = {u : − log �(u) − (− log ��(u)) > − log �}.
We have

1�
∑

u∈Ĉ�

��(u)�
∑

u∈Ĉ�

�(u)/� = (1/�)�(Ĉ�).

(Here the second inequality follows from the definition of Ĉ�, whereas all others are obvious.) So, we obtain that
�(Ĉ�)��. From definitions of C�, Ĉ� and (2) we immediately obtain that Ĉ� ⊃ C�. Thus, �(C�)��. By definition,
�(C�) is the value of the Type I error. The first statement of Theorem 1 is proven.

Let us prove the second statement of the theorem. Suppose that the hypothesis Hid
1 is true. That is, the sequence

x1 . . . xt is generated by some stationary and ergodic source 
 and 
 �= �. Our strategy is to show that

lim
t→∞ − log �(x1 . . . xt ) − |�(x1 . . . xt )| = ∞ (9)

with probability 1 (according to the measure 
). First, we represent (9) as

− log �(x1 . . . xt ) − |�(x1 . . . xt )| = t

(
1

t
log


(x1 . . . xt )

�(x1 . . . xt )
+ 1

t
(− log 
(x1 . . . xt ) − |�(x1 . . . xt )|)

)
.

From this equality and the property of a universal code (4) we obtain

− log �(x1 . . . xt ) − |�(x1 . . . xt )| = t

(
1

t
log


(x1 . . . xt )

�(x1 . . . xt )
+ o(1)

)
. (10)

Now we use some results of the ergodic theory and the information theory, which can be found, e.g. in [1]. First, according
to the Shannon–MacMillan–Breiman theorem, there exists the limit limt→∞ − log 
(x1 . . . xt )/t (with probability 1)
and this limit is equal to so-called limit Shannon entropy, which we denote as h∞(
). Second, it is known that for any
integer k the following inequality is true: h∞(
)� −∑v∈Ak 
(v)

∑
a∈A 
(a/v) log 
(a/v). (Here, the right hand value

is called m-order conditional entropy.) It will be convenient to represent both statements as follows:

lim
t→∞ − log 
(x1 . . . xt )/t � − ∑

v∈Ak


(v)
∑
a∈A


(a/v) log 
(a/v) (11)

for any k�0 (with probability 1). It is supposed that the process � has a finite memory, i.e. belongs to Ms(A) for some s.
Having taken into account the definition of Ms(A) (1), we obtain the following representation:

− log �(x1 . . . xt )/t = −t−1
t∑

i=1
log �(xi/x1 . . . xi−1)

= −t−1

(
k∑

i=1
log �(xi/x1 . . . xi−1) +

t∑
i=k+1

log �(xi/xi−k . . . xi−1)

)
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for any k�s. According to the ergodic theorem there exists a limit

lim
t→∞ t−1

t∑
i=k+1

log �(xi/xi−k . . . xi−1),

which is equal to −∑v∈Ak 
(v)
∑

a∈A 
(a/v) log �(a/v), see [1,6]. So, from the two latter equalities we can see that

lim
t→∞(− log �(x1 . . . xt ))/t = − ∑

v∈Ak


(v)
∑
a∈A


(a/v) log �(a/v).

Taking into account this equality, (11) and (10), we can see that

− log �(x1 . . . xt ) − |�(x1 . . . xt )|� t

( ∑
v∈Ak


(v)
∑
a∈A


(a/v) log(
(a/v)/�(a/v))

)
+ o(t)

for any k�s. From this inequality and the lemma we can obtain that − log �(x1 . . . xt ) − |�(x1 . . . xt )|�ct + o(t),
where c is a positive constant, t → ∞. Hence, (9) is true and the theorem is proven.

Proof of Theorem 2. First, we show that for any source �∗ ∈ M0(A) and any word x1 . . . xt ∈ At, t > 1, the following
inequality is valid:

�∗(x1 . . . xt ) = ∏
a∈A

(�∗(a))	
t (a) �

∏
a∈A

(	t (a)/t)	
t (a). (12)

Here the equality holds, because �∗ ∈ M0(A). The inequality follows from the lemma. Indeed, if p(a) = 	t (a)/t and
q(a) = �∗(a), then

∑
a∈A

	t (a)

t
log

(	t (a)/t)

�∗(a)
�0.

From the latter inequality we obtain (12).
Let now � belong to Mm(A), m > 0. We will prove that for any x1 . . . xt

�(x1 . . . xt )�
∏

u∈Am

∏
a∈A

(	t (ua)/	̄t (u))	
t (ua). (13)

Indeed, we can present �(x1 . . . xt ) as

�(x1 . . . xt ) = �(x1 . . . xm)
∏

u∈Am

∏
a∈A

�(a/u)	
t (ua),

where �(x1 . . . xm) is the limit probability of the word x1 . . . xm. Hence, �(x1 . . . xt )�
∏

u∈Am

∏
a∈A �(a/u)	

t (ua).

Taking into account the inequality (12), we obtain∏
a∈A

�(a/u)	
t (ua) �

∏
a∈A

(	t (ua)/	̄t (u))	
t (ua)

for any word u. So, from the last two inequalities we obtain (13).
It will be convenient to define two auxiliary measures on At as follows:

�m(x1 . . . xt ) = �2−t h∗
m(x1...xt ), 
(x1 . . . xt ) = 2−|�(x1...xt )|, (14)

where x1 . . . xt ∈ At and � = (
∑

x1...xt∈At 2−t h∗
m(x1...xt ) )−1. If we take into account that 2−(t−m) h∗

m(x1...xt )

= ∏
u∈Am

∏
a∈A(	t (ua)/	̄t (u))	

t (ua), we can see from (13) and (14) that, for any measure � ∈ Mm(A) and any

x1 . . . xt ∈ At,

�(x1 . . . xt )��m(x1 . . . xt )/�. (15)
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Let us denote the critical set of the test Υ t
�,
,m as C�, i.e. by definition, C� = {x1 . . . xt : (t − m)h∗

m(x1 . . . xt ) −
(|�(x1 . . . xt )|) > log(1/�)}. From (14) we obtain

C� = {x1 . . . xt : (t − m)h∗
m(x1 . . . xt ) − (− log 
(x1 . . . xt )) > log(1/�)}. (16)

From (15) and (16) we can see that for any measure � ∈ Mm(A)

�(C�)��m(C�)/�. (17)

From (16) and (14) we obtain

C� = {x1 . . . xt : 2 (t−m)h∗
m(x1...xt ) > (� 
(x1 . . . xt ))

−1}
= {x1 . . . xt : (�m(x1 . . . xt )/�)−1 > (� 
(x1 . . . xt ))

−1}.
Finally,

C� = {x1 . . . xt : 
(x1 . . . xt ) > �m(x1 . . . xt )/(� �)}. (18)

The following chain of inequalities and equalities is valid:

1�
∑

x1...xt∈C�


(x1 . . . xt )�
∑

x1...xt∈C�

�m(x1 . . . xt )/(��) = �m(C�)/(� �)��(C�)�/(� �) = �(C�)/�.

(Here, both equalities and the first inequality are obvious, the second and the third inequalities follow from (18) and
(17), correspondingly.) So, we obtain that �(C�)�� for any measure � ∈ Mm(A). Taking into account that C� is the
critical set of the test, we can see that the probability of the Type I error is not greater than �. The first claim of the
theorem is proven.

The proof of the second statement of the theorem will be based on some results of Information Theory. The t-order
conditional Shannon entropy is defined as follows:

ht (p) = − ∑
x1...xt∈At

p(x1 . . . xt )
∑
a∈A

p(a/x1 . . . xt ) log p(a/x1 . . . xt ), (19)

where p ∈ M∞(A). It is known that for any p ∈ M∞(A) firstly, log |A|�h0(p)�h1(p)� · · ·, secondly, there exists
limit Shannon entropy h∞(p) = limt→∞ ht (p), thirdly, limt→∞ −t−1 log p(x1 . . . xt ) = h∞(p) with probability 1
and, finally, hm(p) is strictly greater than h∞(p), if the memory of p is greater than m, (i.e. p ∈ M∞(A) \ Mm(A)),
see, for example, [1,6].

Taking into account the definition of the universal code (4), we obtain from the above described properties of the
entropy that

lim
t→∞ t−1|�(x1 . . . xt )| = h∞(p) (20)

with probability 1. It can be seen from (6) that h∗
m is an estimate for the m-order Shannon entropy (19). Applying the

ergodic theorem we obtain limt→∞ h∗
m(x1 . . . xt ) = hm(p) with probability 1; see [1,6]. Having taken into account that

hm(p) > h∞(p) and (20) we obtain from the last equality that limt→∞((t − m) h∗
m(x1 . . . xt ) − |�(x1 . . . xt )|) = ∞.

This proves the second statement of the theorem.
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