
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 6, SEPTEMBER 1999 2083

Efficient Homophonic Coding

Boris Ryabko and Andrei Fionov

Abstract—Homophonic coding, or homophonic substitution, is referred
to as a technique that contributes to reliability of the secret-key cipher
systems. Its main goal is to convert the plaintext into a sequence of com-
pletely random (equiprobable and independent) code letters. In solving
this problem three characteristics are to be considered: i) redundancy,
defined as the difference between the mean codeword length and the
source entropy, ii) an average number of random bits used in encoding,
and iii) complexity of the encoder and decoder, measured by memory size
(in bits) and computation time (in bit operations). A class of homophonic
codes is suggested for which both the redundancy and the average number
of random bits can be made as small as required with nonexponential
growth of memory size and roughly logarithmic growth of computation
time.

Index Terms—Computational complexity, homophonic coding, ran-
domization, secret key cryptosystems, source coding.

I. INTRODUCTION

Homophonic coding, or homophonic substitution, is known to be a
kind of message randomization that aims to convert a source message,
consisting of nonuniformly distributed letters of some alphabet, into
a uniquely decodable sequence of “more uniformly” distributed code
symbols. The uniformity of distribution means that all the symbols
are equiprobable and independent, or, in other words, completely
random. Randomization is said to be perfect if it achieves an exactly
uniform distribution, i.e., produces a completely random output. Only
those homophonic coding schemes that ensure perfect randomization
will be dealt with in the present correspondence.

The main application field of message randomization is cryptog-
raphy. The grounds for this were established by Shannon in his
pioneering work on secrecy systems [1]. Shannon introduced a notion
of the key-equivocation functionf(n), which was defined to be
the conditional entropy of the secret key given the firstn digits
of ciphertext, i.e.,f(n) = H(ZjY n), whereZ denotes the secret
key andY n denotes the firstn digits of the ciphertext. He called
a secret-key cipher system strongly ideal iff(n) is constant, i.e.,
H(ZjY n) = H(Z) for all n, which is equivalent to the statement
that the ciphertext is statistically independent of the secret key. The
strongly ideal cryptosystem ensures that the secret key cannot be
reconstructed by a cryptoanalyst using a ciphertext-only attack, in
spite of whatever long sequence of ciphertext he may have. Shannon
also noticed that if there existed an “artificial” language whose letters
were equiprobable and independent, then a simple cipher would
produce a strongly ideal cryptosystem (regardless of the statistics
for the secret key). Message randomization is intended to simulate
the artificial language mentioned by Shannon. The benefits of this
simulation for cryptography are studied in [2] and [3].

To clarify the main idea of conventional homophonic coding
consider an example. Let a Bernoulli source generate letters over the
alphabetA = fa; bg with probabilitiesP (a) = 3=4, P (b) = 1=4.

Manuscript received November 9, 1997; revised October 15, 1998. This
work was supported by the Russian Foundation of Basis Research under Grant
99-01-00586.

The authors are with SibSATIS, Novosibirsk, 630102, Russia.
Communicated by D. Stinson, Associate Editor for Complexity and Cryp-

tography.
Publisher Item Identifier S 0018-9448(99)05864-2.

Encode source symbols according to the following mapping:

a !
v1 ! 00 with probability 1=3
v2 ! 01 with probability 1=3
v3 ! 10 with probability 1=3

b! v4 ! 11 with probability1:

Herev1; v2; v3; v4 are homophones that substitute the source sym-
bols. Each homophone is encoded by a 2-bit codeword. We obtain
a code sequence indistinguishable from a random one since the
probability of any 2-bit combination is equal to1=4. This coding
scheme, however, has a disadvantage of, in general, not minimizing
the average codeword length and being applicable only to sources
whose symbol probabilities are the ratio between a positive integer
and a power of2.

In [2], a variable-length homophonic coding scheme, which does
not have that disadvantage, was proposed. It claims that the mapping
for the same source be done as follows:

a !
v1 ! 0 with probability 2=3
v2 ! 10 with probability 1=3

b! v3 ! 11 with probability 1: (1)

This scheme tackles the problem of perfect randomization, as well,
the mean codeword length being reduced. Besides, the method may
be applied to sources with arbitrary rational symbol probabilities.

In [3], an optimum homophonic coding scheme was defined as a
scheme minimizing the mean codeword length for a given source.
The increase of the message length produced by a randomization
method may be measured by redundancy, denoted henceforth by
r, which is defined as the difference between the mean codeword
length and the source entropy. To make a choice among homophones,
encoding methods use independent random bits obtained from a table
or a generator. It has been shown in [3] that if the homophones
have distinct choice probabilities for every source symbol (as in the
above example) then the homophonic coding scheme is optimal, the
redundancy does not exceed 2 bits and not more than four random
bits on average are required to pick a homophone. A more accurate
proof of this result has been given in [4]. Note that the redundancy
of optimum homophonic coding is only one bit greater than that
for Huffman coding. Thus one additional bit of redundancy is the
payment for the randomness of code sequence.

One often may face applications where redundancy and, perhaps,
a number of random bits used in encoding, should be decreased. The
problem of decreasing redundancy is common for information theory
and aims to lessen the length of encoded message. The problem
of decreasing the number of random bits is not so widely known.
There exist two opposite points of view on the problem of random
bit generation. From one point of view, it is quite a simple task to
generate pseudo-random numbers and we have a lot of computer
programs to do it fast. From another point of view, generating
truly random numbers is a hard task. More exactly, a computer
program, whose length is shorter than that of a random bit sequence
it aims to generate (which is based on the concept of Kolmogorov
complexity), does not exist. Of course, there are many who adhere
to an intermediate point of view on the problem. Therefore, it would
be useful to have a class of methods which make it possible to use
as few random bits as one may desire. Of course, one may expect
that the lower the number of random bits to be consumed the greater
are complexities of the encoder and decoder.

To decrease redundancy one may encode blocks of symbols.
However, conventional methods of block coding lead to exponential

0018–9448/99$10.00 1999 IEEE

2084 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 6, SEPTEMBER 1999

growth of the memory size (or computation time) as the length of a
block increases, and hence are intractable. We suggest a homophonic
coding method, based on efficient block coding, which requires only
linear growth of memory size when increasing the length of a block
(preliminary versions of the method were presented in [5] and [6]).
The method allows to obtain arbitrarily low redundancyr per source
symbol with memory size and computation time growing as

O(1=r) andO(log2 1=r log log 1=r) (2)

respectively, asr ! 0. In the process of encoding not more than4r
random bits per symbol are used on average, which corresponds to
the case when random bits are hard to generate.

When random bits are easily obtained, we can suggest a still
more efficient method of homophonic coding based on arithmetic
coding (for arithmetic coding details see, e.g., [7] and [8]; see also
the paper [9] whose author was apparently the first to apply the
technique to the homophonic coding problem). Our method, when
providing arbitrarily small redundancy, requires the memory size and
computation time to grow as

O(log 1=r) andO(log 1=r log log 1=r log log log 1=r) (3)

respectively, asr ! 0. We need, however, about2 + r random bits
for encoding each source symbol.

The two mentioned approaches are combined in a class of homo-
phonic coding methods that allows to construct homophonic codes
under simultaneously imposed restrictions both on the redundancy
and the (average) number of random bits to be used. This solution
corresponds to the centrist position on the problem of random bit
generation and its computational complexity lies between (2) and (3).

For the sake of simplicity, we confine ourselves only to Bernoulli
sources and a binary encoding alphabet. However, our methods can
easily be applied to Markov sources by using the standard techniques
developed in source coding theory. If a Markov source has the
connectivity�, i.e., the probability of every source symbol depends
on � preceding symbols, and the size of the source alphabet is
jAj then we needO(jAj�+1) bits of memory to store conditional
probabilities. Nevertheless, the asymptotic estimates of the memory
size and computation time given by (2) and (3) still remain correct.

The correspondence is organized as follows. In the next section, we
give necessary notations and present, by means of simple examples,
the main ideas of our approach. In Section III, we describe a letterwise
homophonic coding method on which the further constructions are
based. In Sections IV and V, we describe two approaches correspond-
ing to two opposite points of view on the random bit generation
problem. Finally, in Section VI, we give a synthesis of the two
approaches corresponding to a general case when both the redundancy
and the number of random bits are restricted.

II. NOTATIONS, DEFINITIONS, AND BASIC IDEAS

Let there be given a Bernoulli source generating letters over the
alphabetA = fa1; a2; � � � ; aNg with probabilitiesP (a1), P (a2),
� � �, P (aN), represented by rational numbers

P (a1) =
�(a1)

�
P (a2) =

�(a2)

�
; � � � ; P (aN) =

�(aN)

�
:

Define cumulative probabilitiesQ(a1);Q(a2); � � � ; Q(aN) as fol-
lows:

Q(a1) = 0; Q(ai) =
j<i

P (aj); i = 2; 3; � � � ; N: (4)

Introduce an auxilliary valuêQ(u) = Q(u) + P (u). ConsiderQ(u)

andQ̂(u) as rational numbers:Q(u) = #(u)=�; Q̂(u) = #̂(u)=�. Let
�; #; #̂, and� be � -bit nonnegative integers (for ease of designation,

allow #̂ and� to take the value2�). Our aim is to encode a message
U = u1u2 � � � uL generated by the source. The messageU may be
treated as a letter generated over the alphabetAL with probability
P (U) = P (u1)P (u2) � � �P (uL). Set a lexicographic order overAL

and define cumulative probabilities

Q(a1a1 � � � a1) = 0; Q(U) =

V <U; V 2A

P (V):

Let againQ̂(U) = Q(U) + P (U).
The keynote of our approach to efficient homophonic coding

is describing the encoding scheme in terms of intervals. Consider
the half-open interval[0; 1) which we shall call an entire range.
Cumulative probability distribution implies a mapping of each source
letter into a correspondent interval:

a1 ! [Q(a1); Q̂(a1));

a2 ! [Q(a2); Q̂(a2)); � � � ; aN ! [Q(aN); Q̂(aN)):

All these intervals are distinct and cover the entire range because
Q(a1) = 0, Q̂(ai) = Q(ai+1) for all i < N , Q̂(aN) = 1, which
can be easily deduced from (4). To ensure perfect randomization we
must partition each interval into a number of homophone intervals
so that i) the size� of each homophone interval be a negative power
of 2 and ii) each interval of size� could be encoded exactly inlog �
bits (here and belowlog x = log2 x). To make such a partition,
the following method can be used (forget for the time being that a
number of homophones may be infinite). Divide the entire range into
two parts ascribing0 to the left part and1 to the right part. For
both parts do the following. If a part fits entirely within the interval
allocated to some letter then this part is a homophone interval for
that letter. Otherwise, continue the process of dividing for a part
just as for the entire range. Eventually we obtain a partition of all
letter intervals into homophone intervals. The ascribed bits form a
codeword for each homophone. Each homophone interval is to be
picked with probability proportional to its size.

To exemplify this method consider the encoding scheme (1).
Cumulative probabilities of the letters dictate the following initial
mapping:a ! [0; 3=4), b ! [3=4; 1). Dividing the entire range
gives the intervals[0; 1=2) and [1=2; 1) with ascribed bits0 and
1, respectively. The interval[0; 1=2) fits entirely within the interval
[0; 3=4) allocated to the lettera, hence it is a homophone interval
for a. Dividing the interval[1=2; 1) gives [1=2; 3=4) and [3=4; 1),
the ascribed bits being10 and 11, respectively. Both intervals are
homophonic, the first one corresponds to the lettera, and the second
one corresponds to the letterb. As a result, we have the following
mapping:

a ! [0; 3=4)!
[0; 1=2) ! 0 with probability 2=3
[1=2; 3=4)! 10 with probability 1=3

b ![3=4; 1) ! [3=4; 1) ! 11 with probability 1:

This is essentially the same as (1). It is important that partitioning
for every letter may be obtained independently. This allows not to
construct the whole encoding table. Partitioning may be combined
with homophone selection, which solves the problem of infinite
number of homophones. A detailed description of the method is given
in Section III. It is worth noting here that the described partitioning
cannot guarantee distinct probabilities for all homophones and hence
the scheme is not optimal from the viewpoint of minimizing average
codeword length. We prove, however, that the maximum mean
redundancy is only one bit greater than that for optimum encoding.
We show also that (in the worst case) a maximum of 12 random bits
on average are needed for homophone selection instead of four bits
in case of an optimum scheme.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 6, SEPTEMBER 1999 2085

In arithmetic coding (see, e.g., [7] and [8]), as well as in fast
block coding from [10], a messageU is represented by an interval
[Q(U); Q̂(U)) allocated to it in the cumulative probability distri-
bution. A codeword is constructed as a number within the interval.
Every source message has an interval allocated to it within the initial
range. If the interval bounds are computed precisely then the interval
size is proportional to the message probability. A set of such intervals
covers the entire initial range. For the purpose of randomization we
may perform homophonic substitution for the interval of a message
just like we do for a single letter. It is obvious that a code sequence
produced in this way is completely random.

The idea of precise computation of the interval for a message leads
us to a method which we shall call block homophonic coding (BHC
for brevity). Let, for example, there be given the messageU = aba
generated by the source defined in Section I. To encode the message,
compute

Q(aba) = P (aaa) + P (aab) = 27=64 + 9=64 = 36=64

P (aba) = 9=64

Q̂(aba) = 45=64:

Partitioning of the interval[36=64; 45=64) gives three homophone
intervals[36=64; 40=64), [40=64; 44=64), and[44=64; 45=64) with
ascribed bits1001, 1010, and101100, respectively. As a result we
have the following mapping:

aba !
1001 with probability 4=9
1010 with probability 4=9
101100 with probability 1=9.

The main part of the BHC algorithm is fast computation of the interval
which has to be done with the arithmetic precision being increased
from � to L� bits, whereL is the length of a message (or block).
Although the method copes well with the problem, one would like to
search for a more efficient method to keep the arithmetic precision.

We suggest a method based on incremental arithmetic coding.
The interval for a message is obtained by narrowing some initial
interval by each successive symbol of the message. To retain constant
arithmetic precision we suggest a technique called “interval splitting.”
It assumes that the interval is represented by homophonic intervals
and only one of them is picked for further narrowing. This is accom-
plished by scaling, a technique well known in practical arithmetic
coding (see, e.g., [8]), which is an operation intended to exclude from
the numbers representing the interval bounds those digits that cannot
be affected by further computations. Taken together, splitting and
scaling guarantee both perfect statistical properties of the code and
constant arithmetic precision. The method will be referred to as the
arithmetic coding with interval splitting (for brevity, ACIS) method.
To emphasize that the arithmetic precision is constant, we transfer the
interval from real to integer numbers (the entire range[0; 1) is scaled
to [0; 2t), t � � +2 for reasons discussed in Section V) and perform
splitting every time the interval bound values become noninteger. To
let the peculiarities of the ACIS encoding be revealed consider a little
longer messageU = aaab generated by the same source. The process
of encoding is shown below, followed with step-by-step explanations.

[0; 16)
a
! [0; 12)

a
! [0; 9)

a
! [0; 6 + 3=4)

!
[0; 6) with probability 24=27

[6; 6 + 3=4) with probability 3=27

[0; 6)
0

! [0; 12)
b
! [9; 12)

10
! [4; 16)

h:s:
!

[4; 8)! 01 with probability 1=3

[8; 16)! 1 with probability 2=3

[6; 6 + 3=4)
0110
! [0; 12)! � � � :

The entire range is[0; 24) since, for the given source,� = 2. The
first lettera narrows this interval to3=4 of its size in proportion to the
share the lettera has in the cumulative probability distribution, i.e.,
the interval[0; 12) is a letter interval allocated to the lettera within
the entire range[0; 16) (the remaining space[12; 16) is allocated to
b). The second and third letters continue narrowing a current interval
similarly, obtaining letter intervals for digramaa and trigramaaa.
But the interval foraaa has a noninteger right bound and we cannot
proceed using only 4-bit integer arithmetic. So we split the interval
into two homophonic intervals and select one of them for further
narrowing. The sizes of homophonic intervals are in the proportion
of 24=4 to 3=4 and their sum is27=4, hence the probabilities of
selection.

Suppose that the interval[0; 6) is picked. The next operation shown
is scaling. Since[0; 6) fits entirely within [0; 8), i.e., within the left
part of the entire range, and occupies3=4 of it, transmit0 to specify
the left part and consider the left part as the entire range, scaling the
interval to [0; 12) to keep up proportions. The letterb narrows the
interval to 1=4 of its size, [9; 12) ([0; 9) is allocated toa). Since
[9; 12) fits entirely within[8; 12), i.e., within the third quarter of the
entire range, and occupies3=4 of it, transmit10 to specify the third
quarter and consider it as the entire range with the proportional scaling
of the letter interval. The last operation is homophonic substitution
for the final interval[4; 16), which is done by partitioning it into
homophone intervals.

To finish the example, return to the second alternative after splitting
the interval. Suppose now that the less probable interval[6; 6+3=4)
is picked. Transmit the binary code for6 and consider the first3=4
of the entire range as a new interval. Further operations are similar
to those explained above.

Tracing all transmitted bits plus bits obtained after homophonic
substitution for the final interval enables us to construct all possible
codewords for the message

aaab !

01001 with probability 24=81
0101 with probability 48=81
01101001 with probability 3=81
0110101 with probability 6=81

where each probability is obtained as a product of all choice prob-
abilities for a particular codeword. Find, e.g., the probability of the
codeword01001 to appear on the encoder output

P (01001) =P (aaab)P (01001jaaab) =
27

256
�
24

81
=

1

32
= 2�5

i.e., P (01001) is equal to probability of a particular combination of
five random bits. The similar results may be obtained for all other
codewords.

In comparison with the BHC method, the ACIS method is more
efficient from the viewpoint of computational complexity. But its
random bit consumption is much greater than that of BHC method
because, in general, splitting an interval may occur after processing
each symbol of the message. Hence, the next idea is to combine
the two methods in order to get benefits from low random bit
consumption of the one and computational efficiency of the other.
The principle of this combining is applying the ACIS method to
blocks of symbols, the parametersQ and Q̂ for the blocks being
computed by means of (a part of) the BHC method.

All the methods considered are described in subsequent sections.
Being applied to a single symbol, the BHC and ACIS methods lead
to the same letterwise coding, which, therefore, may be regarded as
an underlying scheme. It is convenient to begin by describing the
letterwise homophonic coding.

2086 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 6, SEPTEMBER 1999

III. L ETTERWISE HOMOPHONIC CODING

In this section, we present an efficient implementation of interval
partitioning, described in Section II, which is used for homophonic
encoding and decoding of a single source letter. The key idea is
that this partitioning can be done by examining bits of numbers
representing the interval bounds and combined with homophone
selection.

A. Letterwise Encoding

To encode a symbolu we need an interval[Q(u); Q̂(u)) allocated
to the symbol in the cumulative probability distribution. The encoding
algorithm is the following.

Find binary representations for the interval bounds

Q(u) =#(u)=� = 0:q1q2 � � � q�q�+1q�+2 � � �

Q̂(u) = #̂(u)=� = q̂0:q̂1q̂2 � � � q̂� q̂�+1q̂�+2 � � �

(only the first� bits are needed at once; further bits are obtained one
by one when required).

Compute an auxiliary� -bit value ~Q(u)

~Q(u) =
b2� Q̂(u)c � 1 =2� ; if q̂i = 0 for all i > �

b2� Q̂(u)c=2� ; otherwise.

Examining not more than� successive bits ofQ(u) and ~Q(u) find
the following presentation:

Q(u) = 0:b1b2 � � � bc0 11 � � � 1 qn+1qn+2 � � � q� � � � ;

~Q(u) = 0:b1b2 � � � bc1 00 � � � 0

s

~qn+1~qn+2 � � � ~q� ;

c � 0; s � 0; n = c+ s+ 1: (5)

In a special case whens = 0 and qi = q̂i = 0 for all i � n, we
obtain a codeword

C(u) = b1b2 � � � bc:

Otherwise, construct a codeword as follows:

C(u) = b1b2 � � � bcr0e1e2 � � � esr1r2 � � � rk (6)

wheree1 = e2 = � � � = es = 1� r0 andr0r1r2 � � � rk is a random
bit sequence of minimal length that makesC(u), viewed as a binary
fraction 0:C(u) expanded by an arbitrary continuation�, satisfy the
inequality

Q(u) � 0:C(u)� < Q̂(u): (7)

To determine whether a particular random bit sequence meets the
requirements imposed by (7), we need to test the following conditions.
If r0 = 0 andqi = 0 for all i > n or r0 = 1 andq̂i = 0 for all i > n
then no other random bits are needed,k = 0. Otherwise, get extra
random bitsr1; r2; � � � ; until such bitrk is encountered that one of
the following conditions hold:

rk >qn+k or (rk = qn+k and

qi = 0 for all i > n+ k) (r0 = 0) (8)

rk < q̂n+k (r0 = 1) (9)

rk <qn+k (r0 = 0) (10)

rk > q̂n+k or (rk = q̂n+k and

q̂i = 0 for all i > n+ k) (r0 = 1): (11)

If either (8) or (9) is true then (7) is satisfied and the construction of
the code is completed. If (10) or (11) holds then the whole sequence
r0r1 � � � rk must be rejected since it leads out of the interval and
the process of finding a relevant random bit sequence must be rerun
once again.

B. Letterwise Decoding

In decoding, a question arises how many code bits are to be taken
into consideration since the actual length of a codeword is unknown.
Let the decoder input receive a code sequencec1c2c3 � � �, whereci
denotes theith code bit. Consider the sequence as an infinite binary
fraction

C = 0:c1c2 � � � c�c�+1c�+2 � � �

(continued with zeros if necessary). A codeword built for the interval
[#=�; #̂=�) and, perhaps, supplemented by some random continua-
tion, specifies a point�=� belonging to the interval. We have

� = bC�c:

Denote byC� the binary fraction formed by the first� code bits

C� = 0:c1c2 � � � c� :

It can be easily seen that, since� � 2� , bC��c � bC�c � bC��c+1,
and sequential multiplying� by c�+1; c�+2; � � � ; is to be done until
the carry into the integer part arises or the product gets a zero bit in
the fractional part (which implies that the carry is no longer possible).
Hence we suggest the following algorithm to compute�.

a) Compute the productC��. Let X = C�� � bC��c, X < 1.
Set i = � .

b) Perform the following operations:

X :=X � 2; � := bXc; X := X � �;

i := i+ 1; if ci = 1 thenX := X + �=2� ;

� := bXc; X := X � �:

c) If � = � then� = bC��c + �; else go to b).

As � is known, find the letteru satisfying the inequality

#(u) � � < #̂(u):

This is the encoded symbol. To finish decoding, reconstruct a code-
word for the letteru using correspondent code bits instead of random
ones, and extract the codeword from the code sequence.

Let us consider an example. LetA = fa; bg, P (a) = 2=3,
P (b) = 1=3, and � = 2. Suppose we need to encode the letterb
provided that the sequence of random bits is00 011 � � �. The interval
allocated to the letterb is [2=3; 1), so we have

Q(b) = 0:101010 � � �

Q̂(b) = 1:0000 � � �

~Q(b) = 0:11:

By examining two bits ofQ(b) and ~Q(b) we obtain

c = 1; s = 0; n = 2

and a codeword is to be built in the form

C(b) = 1r0r1 � � � rk:

The first two random bits giver0 = 0, r1 = 0, and are to be rejected
since r1 < q3 (see (10)). The further random bits giver0 = 0,
r1 = 1 = q3, r2 = 1 > q4 ((8) is satisfied forr2) and we obtain
the codeword

C(b) = 1011:

In decoding, we have the code sequencec1c2c3c4� = 1011�,
where � is an arbitrary binary continuation (produced by other
codewords). For our source,� = 2 but the first two code bits do
not allow us to decide on the letter encoded since both lettersa and

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 6, SEPTEMBER 1999 2087

b may have codewords that begin with10. Suppose, for simplicity,
that � = 000 � � �, thus permitting the maximal “trend” of the code
sequence toward the lettera. We have

C� = 0:10 C�� = 1:10 X = 0:10:

Perform Step b)

� =1; X = 0:0;

c3 =1 X = 0:11;

� =0; X = 0:11:

Since� 6= � repeat Step b)

� = 1; X = 0:1; c4 = 1 X = 1:01; � = 1:

Now � = � and we obtain� = 1 + 1 = 2. The encoded letter isb
since#(b) = 2. In this particular example we detected all four bits of
the codeword. However, in the general case, the number of code bits
can be less than or equal to� , so we need to reconstruct a codeword
after finding the encoded symbol. In our example, we could do this
by encoding the letterb using c2c3c4 instead ofr0r1r2.

C. Letterwise Coding Properties

Lemma 1: In computation of�, the average number of repetitions
of Step b) does not exceed2.

Proof: Assume that the code sequence is completely random.
Then C� is a random variable uniformly distributed in[0; �) and
its binary representation (apart from the first� bits) may be treated
as a random bit sequence. Consider only one of the conditions to
stop iterations, namely,� = � = 0. It means that a0 bit appears in
the binary representation ofC�, probability of this event being1=2.
Hence, two efforts are required on average to get� = � = 0 satisfied.

Theorem 1: Let the described letterwise homophonic coding be
applied to messages generated by a Bernoulli source with known
statistics. Then the following propositions hold:

i) to construct a codeword at most 12 random bits are needed
on average;

ii) the mean codeword length does not exceedH(u) + 3 bits,
whereH(u) is the entropy of a source letter;

iii) the mean time of encoding and decoding is determined by
several� -bit multiplication-type operations (two divisions in
encoding, one multiplication and two divisions in decoding).

Proof: To prove Proposition i), first, find the mean lengthNr of
the random bit sequence that satisfies one of the conditions (8)–(11).
Notice that one bit(r0) is always needed. To provide an upper
estimate assume that� = 1 and neitherQ(u) nor Q̂(u) contain
tails of zeros. Then the number of additional random bits will be
determined by how long the equality between an immediate bitrk
and a corresponding bitqn+k (or q̂n+k) is held, the probability of
this equality being

Prfrk = qn+kg

= Prfrk = 0g � Prfqn+k = 0g

+Prfrk = 1g � (1� Prfqn+k = 0g) = 1=2:

This means that, apart fromr0, one more random bit will be needed
with probability1=2, after which one more random bit will again be
needed with the same probability, and so on. Hence

Nr = 1 +
1

2
� 1 +

1

4
� 2 +

1

8
� 3 + � � � = 1 +

1

n=1

n

2n
= 3:

Since eitherqn+1 6= 1 or q̂n+1 6= 0 (see (5)) any random bit
sequence will at worst satisfy either (8) or (9) with probability1=4.

Consequently, there will be required four different sequences on
average and the total mean number of random bits will be4Nr = 12.

For Proposition ii), let the codeword constructed for the symbol
u 2 A be defined as (6). Its length equalsc+s+1+k, 1+k being the
number of random bits. Denote byl(u) the mean codeword length
for the letteru

l(u) = c+ s+Nr:

Since the size of the interval equalsP (u), c + s � b� logP (u)c.
Hence

l(u) � b� logP (u)c+ 3 � � logP (u) + 3:

The expected value ofl(u) over the whole set ofu 2 A

E[l(u)] =
u2A

P (u)l(u)�
u2A

P (u)(� logP (u) + 3)

=�
u2A

P (u) logP (u) + 3
u2A

P (u) = H(u) + 3:

Finally, taking into account the description of the algorithm,
Lemma 1, and the first proposition of the theorem, Proposition iii)
becomes obvious.

IV. BLOCK HOMOPHONIC CODING

Let there be given a message (or a block of symbols)U and,
for ease of designation, the lengthL of the message be a power
of 2, L = 2�. In [10], a fast and space-efficient algorithm to
computeQ(U) and Q̂(U) has been proposed. For the purpose
of randomization we accomodate this algorithm to rational symbol
probabilities. Let the individual letter and cumulative probabilities be

P (u1) = �01=�0; � � � ; P (uL) = �0L=�0

Q(u1) =#01=�0; � � � ; Q(uL) = #0L=�0; L = 2�:

A. BHC Encoding

Compute

#ik =#i�12k�1�i�1 + �i�12k�1#
i�1

2k

�ik = �i�12k�1�
i�1

2k ; k = 1; 2; � � � ; L=2i

�i =(�i�1)
2; i = 1; 2; � � � ; �: (12)

ThenQ(U) = #�1=��, Q̂(U) = (��1 + #�1)=��.
Note thatQ(U) and Q̂(U) are ratios ofL� -bit numbers. To find

homophonic code forU apply to the interval[Q(U); Q̂(U)) the
letterwise homophonic encoding method described in Section III with
only one modification: replace everywhere� by L� .

B. BHC Decoding

Let the decoder input receive a code sequenceC. On the basis of
at leastL� code bits compute� = bC��c (see Section III).

Let Z�

1 = �. Compute

Z��1

1 = bZ�

1 =���1c; � � � ; Z
1
1 = bZ2

1=�1c; Z
0
1 = bZ1

1=�0c:

Find the symbolu1 that satisfies the inequality#(u1) � Z0
1 < #̂(u1).

It will be the first encoded symbol. ComputeZ0
2 = b(Z1

1�#
0
1�0)=�

0
1c

and findu2 satisfying#(u2) � Z0
2 < #̂(u2). Using (12) compute#11

and�11. ComputeZ1
2 = b(Z2

1 �#11�1)=�
1
1c and fromZ0

3 = bZ1
2=�0c

find the symbolu3, and fromZ0
4 = b(Z1

2 � #03�0)=�
0
3c find u4.

As we have known the first four symbols, obtain#21 and �21. From
Z2
2 = b(Z3

1�#
2
1�2)=�

2
1c, proceeding in the same manner, findu5, u6,

u7, u8, #32, and�32. The process going on, we shall eventually obtain

Z��1

2 = b(Z�

1 � #��11 ���1)=�
��1

1 c

2088 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 6, SEPTEMBER 1999

that will give us the lastL=2 encoded symbols, as well as#��12 and
���12 . After having decoded the whole message, compute#�1 and��1
and reconstruct the codeword using corresponding input bits instead
of random ones. Extracting the codeword from the input sequence
completes the decoding.

C. BHC Method Properties

Theorem 2: Let the BHC algorithm be applied to encoding mes-
sages of the lengthL, L � 1, generated by a Bernoulli source with
known statistics. Then the following propositions hold:

i) the mean per symbol redundancyr does not exceed3=L bits
and not more than12=L = 4r random bits per symbol are
required on average;

ii) the memory size of the encoder and decoder increases as
O(L), and the mean per symbol time of encoding and
decoding grows asO(log2 L log log L) asL ! 1.

Proof: The first proposition immediately follows from Theo-
rem 1.

The estimate of the memory size required is based on the obser-
vation that in (12), for every layeri formed by all#i and �i, the
memory amount of2L� bits is needed and all values of theith layer
depend only on those of the (i � 1)th layer, so only two layers are
to be stored at any instant. In decoding, the additional memory for
Z values is also confined to2L� bits, since at any instant only one
value of every layer suffices to be stored.

The estimate of the algorithm’s time consumption is obtained by
summing up complexities of the operations involved. We assume that
Scḧonhage–Strassen’s method should be used for multiplication and
division (see [11]). This method requiresO(n logn log log n) bit op-
erations for multiplying twon-bit numbers or dividing2n-bit number
by n-bit one. According to [10], it causes the complexity of com-
puting ��1 , #�1 , andZi

k to be determined asO(L log2 L log log L),
asL ! 1, while the letterwise homophonic coding, givenQ(U)
andQ̂(U), requiresO(L logL log log L) operations (see Lemma 1),
from which the proposition of the theorem immediately follows.

Corollary 1: The estimates of the memory size and mean-per-
symbol time considered as functions of the redundancyr, are
determined asO(1=r) and O(log2 1=r log log 1=r), respectively,
as r ! 0.

V. ARITHMETIC CODING WITH INTERVAL SPLITTING

Denote byl andh the lower and higher bounds of the interval. Let
l andh be t-bit unsigned integers (for ease of designation, allowh
to take the value2t). We claim thatt satisfy the inequality

t � � + 2 (13)

which will guarantee that no symbol maps into the interval of the
size less than one unit.

A. ACIS Encoding

First define the scaling operation for the interval[l; h). Consider
the closed interval[l; g], whereg = h � 1 + 0:111 � � � (the number
0:111 � � � is in binary notation). Letl andg have binary expansions

l = l1l2 � � � lt:000 � � �

g = g1g2 � � � gt:111 � � � :

By examining bits ofl andg find the following presentation:

l = b1b2 � � � bc0 11 � � � 1 ln+1 � � � lt:000 � � � ;

g = b1b2 � � � bc1 00 � � � 0

s

gn+1 � � � gt:111 � � � ;

0 � c � t; 0 � s � t� 1; n = c+ s+ 1 (14)

(here the upper bounds forc ands are due to (13)). The scaling, then,
results in transmittingb1b2 � � � bc to the encoder output, incrementing
the “squeeze counter”S by s, and computing new interval bounds

l0 =0ln+1 � � � lt0 � � � 0:000 � � �

g0 =1gn+1 � � � gt1 � � � 1:111 � � � : (15)

Squeezing an interval will entail transmittingS zeros or ones after
the next code bit is determined. Therefore, transmittingb1 must be
followed by transmittingS opposite bits1�b1 (with consequent set-
ting S to zero) due to squeezing in the previous scaling operation(s).
We shall call the interval[l; h), where l = l0 and h = bg0c + 1,
normalized.

Notice that if for a large number of successive symbols ofU
scaling results only in increasingS then S may overflow. Since
for each symbolu1; u2; � � � ; uL; S may be increased byt � 1 at
most (this is the maximal value ofs in (14)), to avoid overflow
L(t� 1) < 2t must hold, wheretS is the size ofS in bits. Hence
we have a restriction on the message length

L <
2t

t� 1
: (16)

Initially, the interval[l; h) is the entire range[0; 2t) andS is set
to zero. Denote byd the size of the intervald = h � l.

For every symbolu 2 U compute the interval within[l; h)
corresponding to the symbolu

l+ dQ(u); l+ dQ̂(u) = [Il +Rl=�; Ih +Rh=�)

whereIl andRl denote the integer part and the remainder for the
value l + dQ(u) = l + d#(u)=�, Ih and Rh denote the same for
l + dQ̂(u).

Split the obtained interval into three homophonic intervalsV �, V ,
and V +

V � = [Il +Rl=�; Il + dRl=�e)

V = [Il + dRl=�e; Ih)

V + = [Ih; Ih +Rh=�)

and choose one of them with probability proportional to its size. It
is convenient to represent sizes of the intervals by integer numbers
v�, v, andv+ proportional to the real sizes

v� = (� �Rl) mod �

v+ = Rh

v = d#̂(u)� d#(u)� v+ � v�:

The problem of probabilistic selection will be discussed later.
If the interval V with integer bounds is picked then setl =

Il + dRl=�e, h = Ih, and perform scaling for the interval[l; h).
The encoding of the symbolu is terminated.

If the intervalV + is chosen then scale the embracing unit-sized
interval[Ih; Ih+1) into the entire range and compute the new bounds
for V +

V + = 0; I 0h +R0

h=�

whereI 0h = b2tRh=�c andR0

h = (2tRh) mod �. SetIl = Rl = 0,
Ih = I 0h, Rh = R0

h and apply recursively the above algorithm of
splitting an interval.

Similarly, if the intervalV � is chosen then scale interval[Il; Il+1)
and compute the new bounds forV �

V � = I 0l +R0

l=�; 2
t

where I 0l = b2tRl=�c and R0

l = (2tRl) mod �. Set Il = I 0l ,
Rl = R0

l, Ih = 2t, Rh = 0 and continue splitting an interval.
After the last symbol of the message is processed we have the final

normalized interval[l; h) and the counterS. If the final interval is

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 6, SEPTEMBER 1999 2089

not [0; 2t) or S 6= 0 then, for perfect randomization, we need to
perform a homophonic substitution for the interval. Find a random
bit sequencer0r1 � � � rk that fits within the interval just like we do in
letterwise homophonic encoding. Transmitr0r1 � � � rk to the encoder
output,r0 being followed byS opposite bits(1� r0). The encoding
of the message is finished.

B. ACIS Decoding

Let the decoder input receive a code sequence. Introduce a variable
c to containt current code bits.

The scaling operation for decoding is similar to that for encoding
except for the following. Neither transmitting bits nor maintaining
squeeze counter are needed. Instead, as bits are shifted out froml
and g, the same-order bits are to be shifted out fromc, new code
bits being shifted in.

Initially, c contains the firstt code bits and the interval[l; h) is
the entire range[0; 2t).

To determine each encoded symbol, it is necessary to find which
letter of the alphabetA might reduce the interval[l; h) so thatc lies
within the reduced interval. To do that computeIc = b(c � l)�=dc
andRc = ((c � l)�) mod d and find the symbolu satisfying the
inequality#(u) � Ic < #̂(u). But if

Ic = #̂(u)� 1 andRc > d� � (17)

then taking into account extra code bits can add1 to Ic making it
equal to#(w) = #̂(u), wherew is the next letter afteru in the
alphabetA. This happens only if the homophonic intervalV + has
been chosen for the letteru, or V � has been chosen for the letter
w in encoding. To distinguish between these two letters consider the
alphabetB = fu; wg with cumulative probability distribution

Q(u) = 0 Q̂(u) = Q(w) = (d�Rc)=� Q̂(w) = 1

take the nextt code bits inc, changing the interval[l; h) to [0; 2t),
and apply recursively the decoding algorithm to the alphabetB.

If the condition (17) does not hold thenu is the encoded symbol.
Reduce the interval[l; h) to [l+ddQ(u)e; l+bdQ̂(u)c) and perform
scaling. The decoding of the symbolu is finished.

C. ACIS Method Properties

Lemma 2: The sized of the normalized interval[l; h) is at least
2t�2 + 2.

Proof: Consider a closed interval[l; g], g = h�1+0; 111 � � �.
Then its size

d = h� l = bgc + 1� l:

There are three variants of normalized intervals possible:[00�; 11�],
[00�; 10�], and [01�; 11�], where� denotest � 2 arbitrary binary
digits. The size of the interval in the first case is greater than that
in the second case, the second and the third cases being equivalent.
For the second case we have

l � 2t�2 � 1 bgc � 2 � 2t�2:

Hence

d � 2 � 2t�2 + 1� (2t�2 + 1) = 2t�2 + 2:

Theorem 3: Let there be given a messageU = u1u2 � � � uL
generated by a source over the alphabetA = fa1; a2; � � � ; aNg and
probability distributionP (a1); P (a2); � � � ; P (aN) for every symbol
u 2 U . Apply to the messageU the ACIS method, the interval

bounds being represented byt bit numbers,t � 4. Then the following
propositions hold.

i) The redundancyr per symbolu satisfies the inequality

r(u) < 8Nt2�t + 3=L: (18)

ii) The memory sizeM of the encoder (decoder) and the timeT
of encoding (decoding), seen as functions oft, t ! 1, are
determined by the estimates

M =O(t)

T =O(t log t log log t):

Proof: Suppose that the message length is infinite(L = 1).
Denote byE[C(u)] the mean codeword length for a symbolu.
Denote byH(u) the entropy of a source letter. In the ACIS encoding
every source symbolu is virtually represented by homophonesv, v�1 ,
v+1 , v�2 , v+2 , � � �, picked with probabilitiesP (v), P (v�1), P (v

+
1), � � �,

the sum of which isP (u). Then

E[C(u)] =
u2A

e(u)

where

e(u) = � P (v) logP (v) + P (v�1) logP (v
�

1)

+P (v+1) logP (v
+
1) + � � � : (19)

Since homophonesv�1 and v+1 occur due to normalized interval
splitting and the size of the normalized interval is greater than
2t�2 (by Lemma 2), probabilitiesP (v�1) andP (v+1) cannot exceed
2�(t�2). Further homophonesv�2 andv+2 occur due to splitting the
entire range[0; 2t) and their probabilities do not exceed2�(t�2)�2�t,
etc. Therefore,

e(u) < � P (v) logP (v) + 2 � 2�(t�2)(t� 2)

+ 2 � 2�(2t�2)(2t� 2) + 2 � 2�(3t�2)(3t� 2) + � � �

=�P (v) logP (v) + 8t
2�t

(1� 2�t)2
� 16

2�t

1� 2�t
:

Since

P (v) � P (u); P (u) < 2�(t�2) + P (v) + 2�(t�2); t � 4

it can be easily shown that

P (u) logP (u)� P (v) logP (v) <
1

ln 2
1� 8 � 2�t 8 � 2�t:

Then

r(u) =E[C(u)]�H(u)

=

N

i=1

e(ai) �

N

i=1

�P (ai) logP (ai)

<

N

i=1

P (ai) logP (ai)� P (v) logP (v)

+8t
2�t

(1� 2�t)2
� 16

2�t

1� 2�t

<

N

i=1

8t2�t
1

t ln 2
+

1

(1� 2�t)2
�

2

t(1� 2�t)

<

N

i=1

8t2�t = 8Nt2�t:

If the message lengthL is finite then, according to Theorem 1,
homophonic encoding of the final interval adds to the code sequence
3 bits on average and the first proposition of the theorem is proved.

The second proposition is based on the observation that we must
storel, h, and several auxilliaryt bit variables while the rest of data
have sizes independent oft. The estimate of the computation time

2090 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 6, SEPTEMBER 1999

is determined by asymptotic complexity oft bit multiplication and
division (see Sch¨onhage–Strassen algorithm in [11]).

Corollary 2: The memory sizeM and the timeT , seen as
functions ofr, r ! 0, are determined by the estimates

M =O(log 1=r)

T =O(log 1=r log log 1=r log log log 1=r): (20)

D. Realization of Interval Selection

To pick one interval from three or two homophonic intervals with
probability proportional to its size we suggest a simple (but obviously
not optimal with respect to the number of random bits) method.

Let there be given three intervalsA; B; C with sizes a; b; c.
Assume that they are ordered by size:a � c � b. Consider the
interval Z to be a concatenation ofA; B; C, z = a + b + c (note
that the shortest interval lies between longer ones).

Divide the intervalZ into two equal parts and mark either the
left or the right part according to a random bit value. If the marked
part fits entirely withinA, B, or C then the corresponding interval
is chosen. Otherwise, contractZ to its marked part and repeat the
process from the beginning.

It is obvious that the probability of a choice will be proportional
to the size of the interval. Increasing arithmetic precision with each
subsequent division may be avoided by scaling the marked part ofZ
to its full size together with doubling the remaining parts ofA; B; C.

A question arises how many random bits we need to make a choice.
The following two lemmas can be easily proved.

Lemma 3: For making a choice between two intervals no more
than two random bits are required on average.

Lemma 4: To make a choice between three intervals no more than
three random bits are required on average.

In the encoding method we must choose between intervalsV , V �,
andV +. The size ofV is usually much greater than the sizes ofV �

andV +. Besides, the problem of choice may arise many times for a
symbol being encoded. A more accurate estimate of the number of
random bits consumed is given by the following.

Theorem 4: For the ACIS encoding there exists a method of
choosing a homophonic interval for which the average number of
random bitsNr used per source symbolu satisfies the inequality

Nr(u) < 2 + r(u) + 9=L

wherer(u) is the code redundancy,r(u)! 0, andL is the message
length.

Proof: For any interval sizesa; b; c there exists an integerk
such that

(2k � 1)(b+ c) � a < (2k+1 � 1)(b+ c): (21)

Denote byN (3)
r the average number of random bits to pick the

interval A, B, or C

N (3)
r � 1�

1

2
+ 2�

1

4
+ � � �+ k �

1

2k
+ (k+ 3)�

1

2k
= 2+

1

2k
:

In the ACIS encoding, homophonic intervalsV , V �, andV + take
the part of the intervalsA, B, andC, respectively. So we have

z = d�(u) b+ c < 2� d > 2t�2 (22)

(using Lemma 2 for the last inequality). Combining (22) and the
right part of (21) obtain

2k >
d�(u)

4�
>

2t

16
P (u):

Hence

N (3)
r (u) < 2 +

16 � 2�t

P (u)

and the expected value over the alphabetA

E N (3)
r (u) =

N

i=1

P (ai)N
(3)
r (ai) < 2 + 16N2�t:

Splitting an interval may be invoked many times. For the first
time, N source letters are distributed over the normalized interval
and it is necessary to pick one of three homophonic intervals.
Subsequently, one of two intervals is to be picked within the entire
range. Furthermore, up to 12 random bits on average are to be used
for homophonic encoding of the final interval according to Theorem
1. Therefore,

Nr <E N (3)
r (u) + (N � 1)2�(t�2) 2 + 2�t(2 + � � �) + 12=L

< 2 + 24N2�t + 12=L:

Taking into account the estimate of redundancy (18) completes the
proof.

VI. A GENERAL METHOD

The present method introduces a class of codes, based on a certain
combination of the methods described earlier, to solve the coding
problem when both redundancy and a number of random bits are
specified. To meet these requirements we suggest to encode blocks
of symbols by means of the ACIS method. If the size of a block ism
then about2=m random bits are expected to be used per one symbol.

Denote byY = u1u2 � � �um a block ofm symbols. For ease of
designation assume thatm is a power of2 and the message length
L is a multiple ofm, m = 2�, L mod m = 0. The messageU may
be represented asU = Y1Y2 � � �YL=m, whereY is a letter of the
alphabetAm. DefineQ(Y), andQ̂(Y) in the same manner as forU .

Let the individual letter and cumulative probabilities be

P (u1) = �01=�0; � � � ; P (um) = �0m=�0

Q(u1) =#01=�0; � � � ; Q(um) = #0m=�0; m = 2�:

Compute

#ik =#i�12k�1�i�1 + �i�12k�1#
i�1
2k

�ik = �i�12k�1�
i�1
2k ; k = 1; 2; � � � ; m=2i

�i =(�i�1)
2; i = 1; 2; � � � ; �:

ThenQ(Y) = #�1=��, Q̂(Y) = (��1+#
�
1)=��, and we may apply the

ACIS method to encode and decodeY . Note only that in decoding,
taking the next letter of the alphabet, should be replaced by taking
the lexicographically next block, the task being apparently solved in
O(m) time.

According to Theorem 3, the redundancy per blockr(Y) <
8Nmt2�t + 3m=L. Hence, the redundancy per letter

r(u) =
r(Y)

m
<

8Nmt2�t

m
+

3

L
:

And by Theorem 4, the average number of random bits

Nr(u) =
Nr(Y)

m
<

2 + r(Y) + 9m=L

m
=

2

m
+ r(u) +

9

L
:

To meet specified upper bounds for both redundancy(r�(u)) and a
number of random bits(N�

r (u)), first, takem satisfying the inequality

2=m � N�

r (u)� r�(u)� 9=L

and, next, taket such that

t2�t �
m(r�(u)� 3=L)

8Nm
:

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 6, SEPTEMBER 1999 2091

Notice that if random bit consumption is not restricted then, to
obtain specified redundancy, the pure ACIS method is to be used
and estimates of the memory size and computation time are given
by (3). If random bit consumption is restricted to be as low as
possible (4r bits, r ! 0) then we have to use the BHC method
whose estimates of the memory size and computation time are given
by (2). If 4r < N�

r < 2 + r then the block version of the ACIS
method is to be applied whose complexity is intermediate between
(2) and (3).

From the above consideration we can derive the following theorem.

Theorem 5: If the redundancyr and the number of random bits
Nr are tied together by the equationNr = cr, wherec may be a
constant or a function ofr, then the following asymptotic estimates
of the memory sizeM and computation timeT are valid:

M = O
1

Nr

+ log
Nr

r

and

T =O log2
1

Nr

log log
1

Nr

+ log
Nr

r
log

1

Nr

+ log
Nr

r

� log log
1

Nr

+ log
Nr

r

as r ! 0.
Note that whenc is constant, i.e.,Nr is proportional tor, we

obtain the estimates (2). Ifc is in reverse proportion tor, i.e.,Nr is
constant, the estimates (3) are obtained.

REFERENCES

[1] C. Shannon, “Communication theory of secrecy systems,”Bell Syst.
Tech. J., vol. 28, no. 4, pp. 656–715, 1949.

[2] Ch. G. Günther, “A universal algorithm for homophonic coding,”
in Advances in Cryptology Eurocrypt-88(Lecture Notes in Computer
Science, vol. 330). Heidelberg/New York: Springer-Verlag, 1988, pp.
405–414.

[3] H. N. Jendal, Y. J. B. Kuhn, and J. L. Massey, “An information-theoretic
treatment of homophonic substitution,” inAdvances in Cryptology
Eurocrypt-89(Lecture Notes in Computer Science, vol. 434). Berlin:
Springer-Verlag, 1990, pp. 382–394.

[4] V. C. da Rocha Jr. and J. L. Massey, “On the entropy bound for
optimum homophonic substitution,” inProc. IEEE Int. Symp. Inform.
Theory (Ulm, Germany, July 1997), p. 93.

[5] B. Y. Ryabko and A. N. Fionov, “A fast and efficient homophonic
coding algorithm,” inAlgorithms and Computation ISAAC-96(Lecture
Notes in Computer Science, vol. 1178). Berlin, Germay: Springer-
Verlag, 1996, pp. 427–438.

[6] , “Decreasing redundancy of homophonic coding,” inProc. IEEE
Int. Symp. Inform. Theory(Ulm, Germany, July 1997), p. 94.

[7] J. Rissanen and G. G. Langdon, “Universal modeling and coding,”IEEE
Trans. Inform. Theory, vol. IT-27, pp. 12–23, Jan. 1981.

[8] T. C. Bell, J. G. Cleary, and I. H. Witten,Text Compression. Engle-
wood Cliffs, NJ: Prentice-Hall, 1990.

[9] W. Penzhorn, “A fast homophonic coding algorithm based on arithmetic
coding,” in Fast Software Encryption(Lecture Notes in Computer
Science, vol. 1008). Berlin, Germany: Springer-Verlag, 1995, pp.
329–345.

[10] B. Y. Ryabko, “Fast and effective coding of information sources,”IEEE
Trans. Inform. Theory, vol. 40, pp. 96–99, Jan. 1994.

[11] A. V. Aho, L. E. Hopcroft, and J. D. Ullman,The Design and Analysis
of Computer Algorithms. Reading, MA: Addison-Wesley, 1976.

Strongly Universal Hashing and
Identification Codes via Channels

Kaoru Kurosawa,Member IEEE, and Takuya Yoshida

Abstract—This correspondence shows that�-almost strongly universal
classes of hash functions can yield better explicit constructions of identifi-
cation codes via channels (ID codes) and identification plus transmission
codes (IT codes) than the previous explicit constructions of Verd´u and
Wei.

Index Terms—Binary constant-weight code, explicit construction, iden-
tification code via channels, universal hash function.

I. INTRODUCTION

Suppose that a transmitter sends a messagea to a receiver through
a communication channel with Shannon capacityCS by encoding
messagea: An (n;W; �1) transmission code is a code which satisfies

Pr [a is selectedja is transmitted] � 1� �1 (1)

for each messagea, where each codeword has lengthn and there are
W messages. The rate of the transmission code is defined as

R1

�
= logW=n:

Shannon proved thatmaxR1 is equal toCS for any arbitrarily small
�1: This model implicitly assumes the following.

1) A bijection from messages to codewords exists (deterministic
encoding).

2) Also, the decoding regions of messages are disjoint and the
receiver selects one message after receiving a noisy version of
the transmitted codeword.

Ahlswede and Dueck [1] introduced a new model called identifi-
cation codes via channels (ID codes). In this model

1) There are many codewords for each message and the transmitter
chooses one of them randomly (probabilistic encoding).

2) The decoding regions of messages are not disjoint and the
receiver chooses a list of messages after receiving a noisy
version of the transmitted codeword.

An (n;M; �1; �2) ID code is a code which satisfies (1) and

Pr [b is selectedja is transmitted] � �2 for all b 6= a (2)

for each messagea, where each codeword has lengthn and there are
M messages. The probabilities are taken over the coin tosses of the
transmitter (to choose a codeword) as well as over the noise of the
channel. The rate of an ID code is defined as

R2

�
= log logM=n

(which is a doublelog !!). It was proven thatmaxR2 is equal toCS

for any arbitrarily small(�1; �2) [1], [5], [6].
In other words, any objects amongM = 22 objects (double

exponentially many) can be identified in block lengthn with arbi-
trarily small error probability if randomization can be used for the

Manuscript received July 14, 1998; revised March 1, 1999.
The authors are with the Department of Electrical and Electronic En-

gineering, Faculty of Engineering, Tokyo Institute of Technology, 2–12–1
O-okayama, Meguro-ku, Tokyo 152-8552, Japan.

Communicated by D. R. Stinson, Associate Editor for Complexity and
Cryptography.

Publisher Item Identifier S 0018-9448(99)06071-X.

0018–9448/99$10.00 1999 IEEE

