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Efficient Homophonic Coding Encode source symbols according to the following mapping:
_ o vy — 00 with probability 1/3
Boris Ryabko and Andrei Fionov a — ¢ v2 — 01 with probability 1/3

vg — 10  with probability 1/3

Abstract—Homophonic coding, or homophonic substitution, is referred b— ws— 11 with probability 1.

to as a technique tha} contributes tohreliability of the secret-key cipher Here v1, va, vs, vs are homophones that substitute the source sym-
systems. Its main goal is to convert the plaintext into a sequence of com- o . : .
pletely random (equiprobable and independent) code letters. In solving bols. Each homophpng ',S enlcoded by a 2-bit codeword. W,e obtain
this problem three characteristics are to be considered: i) redundancy, & code sequence indistinguishable from a random one since the
defined as the difference between the mean codeword length and the probability of any 2-bit combination is equal /4. This coding
source entropy, ii) an average number of random bits used in encoding, scheme, however, has a disadvantage of, in general, not minimizing
and iii) complexity of the encoder and decoder, measured by memory size the average codeword length and being applicable only to sources

(in bits) and computation time (in bit operations). A class of homophonic h [ . .
codes is suggested for which both the redundancy and the average number WNOSe symbol probabilities are the ratio between a positive integer

of random bits can be made as small as required with nonexponential and a power of2.

growth of memory size and roughly logarithmic growth of computation In [2], a variable-length homophonic coding scheme, which does
time. not have that disadvantage, was proposed. It claims that the mapping
Index Terms—Computational complexity, homophonic coding, ran- for the same source be done as follows:
domization, secret key cryptosystems, source coding. vy — 0 with probability 2/3
“ {UQ — 10 with probability 1/3
|. INTRODUCTION b— w3 — 11 with probability 1. 1)

Homophonic coding, or homophonic substitution, is known to beBhis scheme tackles the problem of perfect randomization, as well,
kind of message randomization that aims to convert a source mess#ge,mean codeword length being reduced. Besides, the method may
consisting of nonuniformly distributed letters of some alphabet, infee applied to sources with arbitrary rational symbol probabilities.

a uniquely decodable sequence of “more uniformly” distributed codeln [3], an optimum homophonic coding scheme was defined as a
symbols. The uniformity of distribution means that all the symbolscheme minimizing the mean codeword length for a given source.
are equiprobable and independent, or, in other words, completdlye increase of the message length produced by a randomization
random. Randomization is said to be perfect if it achieves an exacthethod may be measured by redundancy, denoted henceforth by
uniform distribution, i.e., produces a completely random output. Onty which is defined as the difference between the mean codeword
those homophonic coding schemes that ensure perfect randomizalémgth and the source entropy. To make a choice among homophones,
will be dealt with in the present correspondence. encoding methods use independent random bits obtained from a table

The main application field of message randomization is cryptogf a generator. It has been shown in [3] that if the homophones
raphy. The grounds for this were established by Shannon in Higve distinct choice probabilities for every source symbol (as in the
pioneering work on secrecy systems [1]. Shannon introduced a notisove example) then the homophonic coding scheme is optimal, the
of the key-equivocation functiorf(n), which was defined to be redundancy does not exceed 2 bits and not more than four random
the conditional entropy of the secret key given the firstigits bits on average are required to pick a homophone. A more accurate
of ciphertext, i.e..f(rn) = H(Z|Y"), where Z denotes the secret proof of this result has been given in [4]. Note that the redundancy
key andY" denotes the firsk digits of the ciphertext. He called of optimum homophonic coding is only one bit greater than that
a secret-key cipher system strongly idealfifr) is constant, i.e., for Huffman coding. Thus one additional bit of redundancy is the
H(Z|Y™) = H(Z) for all n, which is equivalent to the statementpayment for the randomness of code sequence.
that the ciphertext is statistically independent of the secret key. TheOne often may face applications where redundancy and, perhaps,
strongly ideal cryptosystem ensures that the secret key cannotaoeumber of random bits used in encoding, should be decreased. The
reconstructed by a cryptoanalyst using a ciphertext-only attack, problem of decreasing redundancy is common for information theory
spite of whatever long sequence of ciphertext he may have. Shanaod aims to lessen the length of encoded message. The problem
also noticed that if there existed an “artificial” language whose lettep$ decreasing the number of random bits is not so widely known.
were equiprobable and independent, then a simple cipher wodlbdere exist two opposite points of view on the problem of random
produce a strongly ideal cryptosystem (regardless of the statistitit generation. From one point of view, it is quite a simple task to
for the secret key). Message randomization is intended to simulgenerate pseudo-random numbers and we have a lot of computer
the artificial language mentioned by Shannon. The benefits of tigigograms to do it fast. From another point of view, generating
simulation for cryptography are studied in [2] and [3]. truly random numbers is a hard task. More exactly, a computer

To clarify the main idea of conventional homophonic codingrogram, whose length is shorter than that of a random bit sequence
consider an example. Let a Bernoulli source generate letters over ithaims to generate (which is based on the concept of Kolmogorov
alphabetd = {a, b} with probabilitesP(a) = 3/4, P(b) = 1/4. complexity), does not exist. Of course, there are many who adhere

to an intermediate point of view on the problem. Therefore, it would
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growth of the memory size (or computation time) as the length ofalow ¢ and$ to take the valug€™). Our aim is to encode a message
block increases, and hence are intractable. We suggest a homophbhie wjus ---u;, generated by the source. The mess&geay be
coding method, based on efficient block coding, which requires ortieated as a letter generated over the alphatfetwith probability
linear growth of memory size when increasing the length of a blodR(U') = P(u;)P(us)--- P(uy,). Set a lexicographic order over”
(preliminary versions of the method were presented in [5] and [6pnd define cumulative probabilities

The method allows to obtain arbitrarily low redundancger source i}

symbol with memory size and computation time growing as Qlarar---a1) =0, QU) = Z

. V<U,VeAL
O(1/r) andO(log® 1/rloglog 1/r) (2)

P(V).

_ _ Let againQ(U) = Q(U) + P(U).
respectively, as — 0. In the process of encoding not more than  The keynote of our approach to efficient homophonic coding
random bits per symbol are used on average, which correspond§siQiescribing the encoding scheme in terms of intervals. Consider
the case when random bits are hard to generate. the half-open interva[0, 1) which we shall call an entire range.

When random bits are easily obtained, we can suggest a Siilimyiative probability distribution implies a mapping of each source
more efficient method of homophonic coding based on arithmejiGier into a correspondent interval:

coding (for arithmetic coding details see, e.g., [7] and [8]; see also .
the paper [9] whose author was apparently the first to apply the — [Q(a1), Q(a1)),

technique to the homophonic coding problem). Our method, when az — [Q(az), Q(az)),- - an — [Qlan), Qlax)).
providing arbitrarily small redundancy, requires the memory size and
computation time to grow as All these intervals are distinct and cover the entire range because

) Qa1) = 0, Q(ai) = Q(a4+1) for all i < N, Q(an) = 1, which
O(log1/r) andO(log 1/rloglog1/rlogloglog1/r)  (3) cafn b)e easily de(?iuced from )(4). To ensure perE‘ect)randomization we
respectively, as — 0. We need, however, abot+ r random bits must partition each interval into a number of homophone intervals
for encoding each source symbol. so that i) the siz€ of each homophone interval be a negative power
The two mentioned approaches are combined in a class of horfb2 and ii) each interval of siz¢ could be encoded exactly lng ¢
phonic coding methods that allows to construct homophonic codiés (here and beloviog z = log, x). To make such a partition,
under simultaneously imposed restrictions both on the redundariBg following method can be used (forget for the time being that a
and the (average) number of random bits to be used. This soluti#mber of homophones may be infinite). Divide the entire range into
corresponds to the centrist position on the problem of random B0 parts ascribing) to the left part andl to the right part. For
generation and its computational complexity lies between (2) and (8pth parts do the following. If a part fits entirely within the interval
For the sake of simplicity, we confine ourselves only to Bernoulfillocated to some letter then this part is a homophone interval for
sources and a binary encoding alphabet. However, our methods 8 letter. Otherwise, continue the process of dividing for a part
easily be applied to Markov sources by using the standard technigil¢s$ as for the entire range. Eventually we obtain a partition of all
developed in source coding theory. If a Markov source has titter intervals into homophone intervals. The ascribed bits form a
connectivityv, i.e., the probability of every source symbol dependgodeword for each homophone. Each homophone interval is to be
on v preceding symbols, and the size of the source alphabetPigked with probability proportional to its size.
A| then we need)(]A|**') bits of memory to store conditional To exemplify this method consider the encoding scheme (1).
probabilities. Nevertheless, the asymptotic estimates of the memérymulative probabilities of the letters dictate the following initial
size and computation time given by (2) and (3) still remain correcinapping:a — [0, 3/4), b — [3/4, 1). Dividing the entire range
The correspondence is organized as follows. In the next section, giges the intervald0, 1/2) and[1/2, 1) with ascribed bits) and
give necessary notations and present, by means of simple examplegespectively. The intervdD, 1/2) fits entirely within the interval
the main ideas of our approach. In Section II, we describe a letterwi$le 3/4) allocated to the letter, hence it is a homophone interval
homophonic coding method on which the further constructions ai@ @. Dividing the interval[1/2, 1) gives[1/2, 3/4) and[3/4, 1),
based. In Sections IV and V, we describe two approaches correspoifg- ascribed bits being0 and 11, respectively. Both intervals are
ing to two opposite points of view on the random bit generaﬁohomophonic, the first one corresponds to the letteand the second
problem. Finally, in Section VI, we give a synthesis of the tw®ne cprresponds to the letter As a result, we have the following
approaches corresponding to a general case when both the redund8H§PINg:

and the number of random bits are restricted. ) [0,1/2) — 0 with probability2/3
@ —[0.3/4) = {[1/2, 3/4) — 10 with probability 1/3
b—[3/4,1) — [3/4,1) — 11 with probability1.

Il. NOTATIONS, DEFINITIONS, AND BASIC IDEAS
Let there be given a Bernoulli source generating letters over the

alphabetd = {ai, as, ---, an} with probabilities P(a;), P(ay), IS is essentially the same as (;). It is important Fhat partitioning
-+, P(ax), represented by rational numbers for every letter may be obtained independently. This allows not to
construct the whole encoding table. Partitioning may be combined
Pla)) = plar) Plas) = f’(@), v, Playn) = plan) with homophone selection, which solves the problem of infinite
6 6 6 number of homophones. A detailed description of the method is given
Define cumulative probabilitieg)(a1), Q(az2). -+, Q(an) as fol- in Section Ill. It is worth noting here that the described partitioning
lows: cannot guarantee distinct probabilities for all homophones and hence
_ N , L - the scheme is not optimal from the viewpoint of minimizing average
@ar) =0, Qlai) = ZP(“’)" =23 N (4) codeword length. We prove, however, that the maximum mean

J<i redundancy is only one bit greater than that for optimum encoding.
Introduce an auxilliary valu€)(u) = Q(u) + P(u). ConsiderQ(u) We show also that (in the worst case) a maximum of 12 random bits
andQ(w) as rational numbers)(u) = 9(u)/6, Q(u) = J(u)/6.Let on average are needed for homophone selection instead of four bits

p, 9,9, andé be T-bit nonnegative integers (for ease of designatiorin case of an optimum scheme.
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In arithmetic coding (see, e.g., [7] and [8]), as well as in fast The entire range if0, 2*) since, for the given source,= 2. The
block coding from [10], a messadgé is represented by an intervalfirst lettera narrows this interval t8/4 of its size in proportion to the
[QU), Q(U)) allocated to it in the cumulative probability distri- share the lettez has in the cumulative probability distribution, i.e.,
bution. A codeword is constructed as a number within the intervahe interval[0, 12) is a letter interval allocated to the letterwithin
Every source message has an interval allocated to it within the initthe entire rang¢0, 16) (the remaining spacg 2, 16) is allocated to
range. If the interval bounds are computed precisely then the interéal The second and third letters continue narrowing a current interval
size is proportional to the message probability. A set of such intervaignilarly, obtaining letter intervals for digram and trigramaaa.
covers the entire initial range. For the purpose of randomization vBait the interval foreaa has a noninteger right bound and we cannot
may perform homophonic substitution for the interval of a messageoceed using only 4-bit integer arithmetic. So we split the interval
just like we do for a single letter. It is obvious that a code sequena@o two homophonic intervals and select one of them for further
produced in this way is completely random. narrowing. The sizes of homophonic intervals are in the proportion

The idea of precise computation of the interval for a message leaifs24/4 to 3/4 and their sum i27/4, hence the probabilities of
us to a method which we shall call block homophonic coding (BHE€election.

for brevity). Let, for example, there be given the messége aba Suppose that the intervil, 6) is picked. The next operation shown
generated by the source defined in Section I. To encode the messagscaling. Sincg0, 6) fits entirely within[0, 8), i.e., within the left
compute part of the entire range, and occupigkt of it, transmit0 to specify

_ the left part and consider the left part as the entire range, scaling the
Q(aba) = Plaaa) + Plaab) = 27/64 + 9/64 = 36/64 interval to [0, 12) to keep up proportions. The lettérnarrows the
P(aba) = 9/64 interval to 1/4 of its size,[9, 12) ([0, 9) is allocated toa). Since
O(aba) = 45/64. [9, _12) fits entirely Within_[8, 12),_i.e., Withirl the third quarter of _the

entire range, and occupi@g4 of it, transmit10 to specify the third

Partitioning of the interva[36/64, 45/64) gives three homophone quarter and consider it as the entire range with the proportional scaling

intervals[36/64, 40/64), [40/64, 44/64), and[44/64, 45/64) with  of the letter interval. The last operation is homophonic substitution

ascribed bitsl001, 1010, and101100, respectively. As a result we for the final interval[4, 16), which is done by partitioning it into

have the following mapping: homophone intervals.
1001 with probability 4/9 TQ finish the example, return to the second alter_natlve aftgr spllttlng
aba — 4 1010 with probability 4 /9 Fhe llnterval. Suppqse now that the less probable.lntéﬁvaﬂ—i—lsﬂl)
101100 with probability 1/9. is picked. Transmit the binary code férand consider the first/4

of the entire range as a new interval. Further operations are similar
The main part of the BHC algorithm is fast computation of the intervad those explained above.
which has to be done with the arithmetic precision being increasedTracing all transmitted bits plus bits obtained after homophonic
from 7 to L7 bits, whereL is the length of a message (or block).substitution for the final interval enables us to construct all possible
Although the method copes well with the problem, one would like teodewords for the message
search for a more efficient method to keep the arithmetic precision.

We suggest a method based on incremental arithmetic coding. 01001 with probability 24/81
The interval for a message is obtained by narrowing some initial 0101 with probability 48/81
interval by each successive symbol of the message. To retain constant aaab = 01101001 with probability 3/81
arithmetic precision we suggest a technique called “interval splitting.” 0110101  with probability 6/81

It assumes that the interval is represented by homophonic intervals

and only one of them is picked for further narrowing. This is acconwhere each probability is obtained as a product of all choice prob-
plished by scaling, a technique well known in practical arithmetigbilities for a particular codeword. Find, e.g., the probability of the
coding (see, e.g., [8]), which is an operation intended to exclude frarndeword01001 to appear on the encoder output

the numbers representing the interval bounds those digits that cannot _

be affected by further computations. Taken together, splitting and>(01001) = P(aaab)P(01001|aaab) = 27 24 1 _ 9—5
scaling guarantee both perfect statistical properties of the code and 256 81 32
constant arithmetic precision. The method will be referred to as the . . . o
arithmetic coding with interval splitting (for brevity, ACIS) method. " P(01001) IS equal t(.) probab|l|ty of a part|cular_comb|nat|on of
To emphasize that the arithmetic precision is constant, we transfer{Wg random bits. The similar results may be obtained for all other

. : . . codewords.
interval from real to in r numbers (the entire r i I . . .
terval from real to integer numbers (the entire rafigel ) is scaled In comparison with the BHC method, the ACIS method is more

to [0, 2%), + > 742 for reasons discussed in Section V) and perform,,. . . . . . :
glment from the viewpoint of computational complexity. But its

splitting every time the interval bound values become noninteger. T : S

let the peculiarities of the ACIS encoding be revealed consider a lit laendom b'.t consumptlon_ IS much_ greater than that of BHC meth(_)d

. ecause, in general, splitting an interval may occur after processing

longer message = aaab generated by the same source. The processéch symbol of the message. Hence, the next idea is to combine
of encoding is shown below, followed with step-by-step explanations. - i - .

9 p-y-step exp t%le two methods in order to get benefits from low random bit

[0, 16) 3]0, 12) & 10, 9) %[0, 6 + 3/4) consumption of the one and computational efficiency of the other.
{[07 6) with probability 24 /27 The principle of this combining is applying the ACIS method to
. o - blocks of symbols, the paramete¢s and ¢ for the blocks being
6,643/4 th bability 3/2
o [b/ + /12 with probability 3/27 computed by means of (a part of) the BHC method.
[0, 6) =10, 12) =9, 12) = [4, 16) All the methods considered are described in subsequent sections.
ns. [[4,8) — 01 with probability 1/3 Being applied to a single symbol, the BHC and ACIS methods lead
- [8,16) — 1 with probability2/3 to the same letterwise coding, which, therefore, may be regarded as

0110 an underlying scheme. It is convenient to begin by describing the
[6,6+3/4) =70, 12) — ---. letterwise homophonic coding.
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lll. LETTERWISE HOMOPHONIC CODING B. Letterwise Decoding

In this section, we present an efficient implementation of interval In decoding, a question arises how many code bits are to be taken
partitioning, described in Section Il, which is used for homophoniato consideration since the actual length of a codeword is unknown.
encoding and decoding of a single source letter. The key idealist the decoder input receive a code sequencecs - - -, wherec;
that this partitioning can be done by examining bits of numbedenotes théth code bit. Consider the sequence as an infinite binary

representing the interval bounds and combined with homophofraction

selection.

A. Letterwise Encoding
To encode a symbal we need an intervat)(u), Q(u)) allocated

020.016‘2"'

CrCr41Cr42 "

(continued with zeros if necessary). A codeword built for the interval
[9/6,9/6) and, perhaps, supplemented by some random continua-

to the symbol in the cumulative probability distribution. The encodinfion. specifies a poin® /¢ belonging to the interval. We have

algorithm is the following.
Find binary representations for the interval bounds

Q(u) =9(u)/6 =0.q1q2 -
Q(u) =9(w)/8 = Go-Giga-

qrdr+1gr42

dr(jf+l(jf+2 e

(only the firstr bits are needed at once; further bits are obtained offecan be easily seen that, sinte<

by one when required). N
Compute an auxiliary--bit value Q(«)

O = (L?i@(uﬂ -1)/2",
27Q(u)l/2".

Examining not more than successive bits af)(«) andQ(«) find
the following presentation:

if Gj=0foralli>r

otherwise.

Q(u) =0.b1b2---be011 - 1gny1gnyz---gr---s
Q(Ll) = ()l)lbz et bcl 00---0 Qn+1§7n+2 st (]7-,
c>0, §>20, n=c+s+1. (5)

In a special case when= 0 andgq;, = ¢; = 0 for all i > n, we
obtain a codeword
C(u) = byby---be.
Otherwise, construct a codeword as follows:
C(u) =b1bs-- (6)

wheree; = ez = -+ =e¢; =1 — 19 androrirz--- i IS @ random
bit sequence of minimal length that mak@su ), viewed as a binary
fraction 0.C'(v) expanded by an arbitrary continuatiensatisfy the
inequality

shergeres - e TE

Qu) < 0.C(u)* < Q(u). )

To determine whether a particular random bit sequence meets the
requirements imposed by (7), we need to test the following conditions.

If ro=0andq; =0foralli >norry=1andg; =0foralli >n

0= |C4].
Denote byC’ the binary fraction formed by the first code bits
C; =0.cic9--cr.
27, [Cr6] < |C8) < [Cr0)41,
and sequential multiplying by ¢-41, ¢r42,- -+, is to be done until
the carry into the integer part arises or the product gets a zero bit in

the fractional part (which implies that the carry is no longer possible).
Hence we suggest the following algorithm to compéte

a) Compute the produef’ 6. Let X = C,6 — [C;6], X < 1.

Seti = 7
b) Perform the following operations:
X =Xx2, a=[X]|, X =X—-q
i:=i+1, ifec;=1thenX :=X +6/27;
g=1X], X=X-3.

c) If « =3 then® = |C;6] + a; else go to b).
As © is known, find the letter: satisfying the inequality
D(u) < O < O(u).

This is the encoded symbol. To finish decoding, reconstruct a code-
word for the letter. using correspondent code bits instead of random
ones, and extract the codeword from the code sequence.

Let us consider an example. Let = {a, b}, P(a) 2/3,
P(b) = 1/3, andT = 2. Suppose we need to encode the lelter
provided that the sequence of random bit8(911 - - -. The interval
allocated to the letteb is [2/3, 1), so we have

Q(b) =0.101010- - -
Q(b) = 1.0000- - -
Q(b) =0.11.

then no other random bits are needéd= 0. Otherwise, get extra By examining two bits ofQ(b) and Q(b) we obtain

random bitsry, o, - - -
the following conditions hold:

TE > 4n+k or (rk = 4dn+k and

¢ =0foralli>n+k) (ro =0) (8)
Tk < otk (ro=1) 9)
Tk < @ntk (ro=0) (10)
Tk > (ntk OF (Tk = Gnqr and

gi=0foralli>n+k) (ro=1). (11)

, until such bitr;, is encountered that one of

c=1, s=0, n=2

and a codeword is to be built in the form

C(b) = 1rory -+ rg.

The first two random bits give, = 0, r1 = 0, and are to be rejected
sincer; < ¢3 (see (10)). The further random bits give 0,
1 =1 =gqs, r2 = 1> qu ((8) is satisfied forrz) and we obtain
the codeword

C(b) = 1011.

If either (8) or (9) is true then (7) is satisfied and the construction of

the code is completed. If (10) or (11) holds then the whole sequencdn decoding, we have the code sequenge;cscx
-7 must be rejected since it leads out of the interval andhere x is an arbitrary binary continuation (produced by other

ToT1 "

1011%,

the process of finding a relevant random bit sequence must be recodewords). For our source, = 2 but the first two code bits do

once again.

not allow us to decide on the letter encoded since both leitensd
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b may have codewords that begin with. Suppose, for simplicity, Consequently, there will be required four different sequences on
that = = 000 - - -, thus permitting the maximal “trend” of the codeaverage and the total mean number of random bits will Ne = 12.
sequence toward the letter We have For Proposition ii), let the codeword constructed for the symbol
_ . _ u € A be defined as (6). Its length equals s+ 1+k, 1+ % being the
Cr=010  Cro=110 X =0.10. number of random bits. Denote liy«) the mean codeword length
Perform Step b) for the letterwu

a=1, X =0.0; I(u)=c+ s+ N,.

3 =1 X =0.11; . . .
o ” ' Since the size of the interval equal¥u), ¢ + s < [—log P(u)].
ﬁ :(), X =0.11. Hence

Sincea # 3 repeat Step b) I(u) < |=log P(u)] + 3 < —log P(u) + 3.
a=1, X =01 cs =1~ X =1.01; 8 =1 )
The expected value df«) over the whole set ofi € A
Now « = 3 and we obtair® = 1 + 1 = 2. The encoded letter i&
sinced(b) = 2. In this particular example we detected all four bits of E[l(u)] = Z P(u)l(u) < Z P(u)(—log P(u) + 3)

the codeword. However, in the general case, the number of code bits u€A u€A
can be less than or equal t9 so we need to reconstruct a codeword =— Z P(u)log P(u) + 3 Z P(u) = H(u) + 3.
after finding the encoded symbol. In our example, we could do this =y =y

by encoding the letteb usingcacscs instead ofrorirs. ) L - .
Finally, taking into account the description of the algorithm,

Lemma 1, and the first proposition of the theorem, Proposition iii)
becomes obvious. O
Lemma 1: In computation o9, the average number of repetitions
of Step b) does not exceetl _ IV. BLock HOMOPHONIC CODING
Proof: Assume that the code sequence is completely random.
Then C§ is a random variable uniformly distributed [0, §) and h .
its binary representation (apart from the firsbits) may be treated for ease of designation, the length of the message be a power

as a random bit sequence. Consider only one of the conditionsotfo2’ L = 2 - In [%O]'T a fast and space-efficient algorithm to
stop iterations, namelyy = 5 = 0. It means that & bit appears in compute Q(U) and Q(U) has been proposed. For the purpose

the binary representation &, probability of this event being /2. of randomization we accomodate this algorithm to rational symbol
Hence. two efforts are require’d on average toget /7 = 0 satisfied probabilities. Let the individual letter and cumulative probabilities be

0 0
Theorem 1: Let the described letterwise homophonic coding be Plur)=p1/bo. - Plur) = pr/bo
applied to messages generated by a Bernoulli source with known — @(u1) =491 /60, -+, Qur) = 97 /o, L=2°.
statistics. Then the following propositions hold:
i) to construct a codeword at most 12 random bits are needfd BHC Encoding

C. Letterwise Coding Properties

Let there be given a message (or a block of symbélsand,

on average; Compute

ii) the mean codeword length does not excdéth) + 3 bits, 9 =il s+ pg_l pi=t
where H (u) is the entropy of a source letter; BTk ke )

ii) the mean time of encoding and decoding is determined by Pk =P2k—1P2k » k=1,2---,L/2
severalr-bit multiplication-type operations (two divisions in b =(8,_1)°, i=1,2,---, 0. (12)

encoding, one multiplication and two divisions in deCOding)ThenQ(U) —97/8 Q(U) — (05 4+ 07) /6.

Proof: To prove Proposition i), first, find the mean length of  Note thatQ(U7) and Q(U7) are ratios ofL-bit numbers. To find
the random bit sequence that satisfies one of the conditions (8)~(Hdmophonic code fol7 apply to the intervalQ(U), Q(U)) the
Notice that one bit(ro) is always needed. To provide an uppefetterwise homophonic encoding method described in Section 11l with

estimate assume that = oo and neithel’Q(u) nor C}(U) contain only one modification: rep|ace everywherd)y Lt.
tails of zeros. Then the number of additional random bits will be
determined by how long the equality between an immediate ;bit B. BHC Decoding

and a corresponding bit,+« (Or §G»+«) is held, the probability of ) ) )
this equality being Let the decoder input receive a code sequafic®n the basis of
at leastLr code bits comput® = |C§, | (see Section IlI).

Pri{ry = qnsr} Let Z{ = ©. Compute
= Priri =0} x Pr{gnss =0} Z7 = 20 [ i) 2L = | 20161 20 = | Z1 /%)
+Prire =1} x (1 = Pr{gnix = 0}) = 1/2. Find the symbot: that satisfies the inequality(u) < Z0 < 9 (u.).

This means that, apart from, one more random bit will be needed'tWi”_be the ﬁf_St e_ncoded symbol. Compuig = [(Z1 —9960)/pY]
with probability 1/2, after which one more random bit will again beand findu, satisfyingd(us) < Z5 < #/(uz). Using (12) compute;

needed with the same probability, and so on. Hence andp;. ComputeZ; = [(Z7 —9161)/p1] and fromZ3 = | Z5 /6]
- find the symbolus, and fromZ§ = [(Z3 — #560)/p%] find ..

N, =1+ 1 x 14 1 X 2+ 1 X34 =1+ Z N3 As we have known the first four symbols, obtalf and p3. From

2 4 8 =2 73 = |(Z} —=9365)/p1 ], proceeding in the same manner, find us,

Since eitherg,1 # 1 of 4ot # 0 (see (5)) any random bit ur, ug, 93, andp3. The process going on, we shall eventually obtain

sequence will at worst satisfy either (8) or (9) with probabiliti. Z9 7 = [(Z27 =97 6e1) /0]
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that will give us the las/2 encoded symbols, as well & * and (here the upper bounds ferands are due to (13)). The scaling, then,

p3~". After having decoded the whole message, compéitandp;  results in transmitting; b- - - - b.. to the encoder output, incrementing

and reconstruct the codeword using corresponding input bits instehd “squeeze counter$ by s, and computing new interval bounds

of random ones. Extr_actlng the codeword from the input sequence I =0lnis 10 0.000- -

completes the decoding. ,
g =1gnyr---gl---1.111---. (15)

C. BHC Method Properties Squeezing an interval will entail transmittir§j zeros or ones after

Theorem 2: Let the BHC algorithm be applied to encoding mesthe next code bit is determined. Therefore, transmittingnust be
sages of the lengtti, L > 1, generated by a Bernoulli source with[0llowed by transmittingS opposite bitsl —b, (with consequent set-
known statistics. Then the following propositions hold: ting .S to zero) due to squeezing in the previous scaling operation(s).

. . We shall call the int I, h), wherel = " andh = |g' 1,
i) the mean per symbol redundancydoes not exceed/ L bits e shall call the intervall, k), where andn L]+

) normalized.
and _not more than2/L = 4r random bits per symbol are Notice that if for a large number of successive symbolsliof
required on average;

- ) . scaling results only in increasin§ then .S may overflow. Since

ii) the memory size of the encoder and decoder increases .
O(L d th bol ti f di g each symbohiy,us,---,ur, S may be increased by — 1 at
(L), an € mean per symbo: lime of encoding ang,,q (this is the maximal value of in (14)), to avoid overflow

. 5 ) ‘
decoding 9“"”5 aé)(l.o.g L_l‘)gl“’% L)asl — cc. L(t — 1) < 2's must hold, where s is the size ofS in bits. Hence
Proof: The first proposition immediately follows from Theo-\ye have a restriction on the message length

rem 1.
The estimate of the memory size required is based on the obser- L< 2's ) (16)
vation that in (12), for every layei formed by all¥* and p*, the t—1
memory amount o2 L7 bits |§ needed and all values of tith layer Initially, the interval[l, &) is the entire rangéd, 2') and S is set
depend only on tho;e of thé € 1)th Ia_lyer, o) only Fwo layers are 4 ,ero0. Denote byl the size of the intervai = h — .
to be stor_ed at any |r_lstant. In dt_acodl_ng, the add!tlonal memory forgq, every symbolu € U compute the interval withirl, h)
Z values is also conflneq L7 bits, since at any instant only ONe corresponding to the symbal
value of every layer suffices to be stored. X
The estimate of the algorithm’s time consumption is obtained by [l +dQ(u), 1 + dQ(u,)) =[Ii+ Ri/b, I + Rn/6)
summing up complexities of the operations involved. We assume that ) )
Sctdnhage—Strassen’s method should be used for multiplication aff§ere Zr and B denote the integer part and the remainder for the
division (see [11]). This method requiréXn log n log log n) bitop-  Value! +dQ(u) = 1+ dd(u)/é, I, and R, denote the same for
erations for multiplying two.-bit numbers or dividin@r-bit number I+ d_Q(’”‘)' . . . o B
by n-bit one. According to [10], it causes the complexity of com- SpI|t+the obtained interval into three homophonic intervars, V',
puting p7, 9%, and Zi. to be determined a® (L log? Lloglog L), andV
as L — oo, while the letterwise homophonic coding, givehl’) Vo =i+ Ri/6 I+ [Ri/6])
andQ(U), requiresO( L log Lloglog L) operations (see Lemma 1), V =[I + [Ri/5], In)
from which the proposition of the theorem immediately followsl

VT =[I,, I, + Ri/6)

Corollary 1: The estimates of the memory size and mean-pefyq choose one of them with probability proportional to its size. It
symbol time considered as fUQCt'O”S of the redundancyare s convenient to represent sizes of the intervals by integer numbers
determined ag)(1/r) and O(log” 1/rloglog 1/r), respectively, o=, v, andv™ proportional to the real sizes
asr — 0. v- = (6 - Ri) mod §

V. ARITHMETIC CODING WITH INTERVAL SPLITTING v =R,

Denote byl andh the lower and higher bounds of the interval. Let v = di(u) — di(u) — v — v
! and h be t-bit unsigned integers (for ease of designation, allow

to take the value'). We claim thatt satisfy the inequality The problem of probabilistic selection will be discussed later.

If the interval V' with integer bounds is picked then skt=
t>7+2 (13) I + [Ri/6], h = I, and perform scaling for the intervdl, ).
) . ) ) The encoding of the symbal is terminated.
which will guarantee that no symbol maps into the interval of the ¢ y,q jnterval 7+ is chosen then scale the embracing unit-sized
size less than one unit. interval[I),, I,+1) into the entire range and compute the new bounds
7+
A. ACIS Encoding for ¥ N
T+ ! !
First define the scaling operation for the interfial). Consider V= [0, I+ Ri /%)
the closed intervall, g], whereg = h — 1 4 0.111--- (the number wherel; = [2°'R., /6| and R}, = (2'R;,) mod 6. Setl; = R; = 0,
0.111--- is in binary notation). Let andg have binary expansions I, = I;,, R, = R}, and apply recursively the above algorithm of

I=11y-1,.000--- splitting an interval.
Similarly, if the intervalV’ ™ is chosen then scale interval, I;+1)
g=g1g2- - ge.111---. and compute the new bounds fbr
By examining bits off andg find the following presentation: Vo= [L’ + RS, 2t)
I =0biby+-+b011-+-11,14-+-1;.000---, where I, = [2'Ri/5| and R} = (2'R;) mod 6. Set; = I,
g=biba---0.100---0¢gnt1---ge111---, R, = R}, I, = 2', R, = 0 and continue splitting an interval.
S—— . .
s After the last symbol of the message is processed we have the final

0<ec<t, 0<s<t—1, nmn=c+s+1 (14) normalized intervall, ) and the countef. If the final interval is
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not [0, 2%) or S # 0 then, for perfect randomization, we need tdounds being represented bigit numberst > 4. Then the following
perform a homophonic substitution for the interval. Find a randopropositions hold.

bit sequenceyr; -- - r4 that fits within the interval just like we do in i) The redundancy per symbolu satisfies the inequality
letterwise homophonic encoding. Transmijt - - - r to the encoder -
output,ro being followed byS opposite bitg1 — ;). The encoding r(u) <8N#27" +3/L. (18)

of the message is finished. i) The memory sizel of the encoder (decoder) and the tiffie

of encoding (decoding), seen as functionstpf — oo, are

B. ACIS Decoding determined by the estimates

Let the decoder input receive a code sequence. Introduce a variable M =0(t)
¢ to containt current code bits. i

The scaling operation for decoding is similar to that for encoding T =O(tlogtloglog t).
except for the following. Neither transmitting bits nor maintaining  pyqof: Suppose that the message length is infifife= o).
squeeze counter are needed. Instead, as bits are shifted ouf frogenote by E[C(u)] the mean codeword length for a symbel
and g, the same-order bits are to be shifted out frornew code  penote byH (u) the entropy of a source letter. In the ACIS encoding

bits being shifted in. ] _ ) ~ every source symbal is virtually represented by homophones;,
Initially, ¢ contains the first code bits and the interval, &) is vt 05, vy, - picked with probabilities?(v), P(v-), P(v7), ---,
the entire rang€o, 2°). o _ the sum of which isP(u). Then
To determine each encoded symbol, it is necessary to find which ’
letter of the alphabett might reduce the intervdl, k) so thatc lies E[C(u)] = Z e(u)
within the reduced interval. To do that compuie= |(c — 1)§/d] ueA
and R. = ((¢ — 1)6) mod d and find the symbok satisfying the where
inequality #(v) < I. < 9(u). But if e(u) = — [P(/U)log P(v)+ P(vy )log P(vy )
I =d(u)—1landR.>d—6 (17) +P (o) log P(vf) + -] (19)

o ) o Since homophones; andv; occur due to normalized interval
then taking into account extra code bits can ddth 1. making it gpjitting and the size of the normalized interval is greater than
equal tod(w) = J(u), wherew is the next letter aftem in the ot—2 (by Lemma 2), probabilities®(v; ) and P(v]") cannot exceed
alphabetA. This happens only if the homophonic interidl™ has 2=(=2)" Eyrther homophones; ahdruj occur due to splitting the
been chosen for the letter, or V= has been chosen for the lettergyire rangd0, 2') and their prébabilitiés do not excegd (2.2~
w in encoding. To distinguish between these two letters consider tge. Therefore,
alphabetB = {u, w} with cumulative probability distribution e(u) < — P(0)log P(0) + 2 - 2_0_2)@ Y

Qu)=0 Q)= Q(uw)=(d~R)/6  Qw)=1 42.27C D9 L9y 4o 9B g gy
. . . . —t —t
take the next cer bits inc, chaqglng thellnterva{l’,, h) to [0, 2), — _P(v)log P(v) + 8t 2 16 2 .
and apply recursively the decoding algorithm to the alphdhet (1—271)2 1-2-t

If the condition (17) does not hold thenis the encoded symbol. Since

Reduce the interval, h) to [I4 [dQ(u)], I+ |[dQ(u)]) and perform P(v) < Pl Pl 9=(t=2) | pyy 49— (t=2) >
scaling. The decoding of the symbalis finished. (v) < P(w), Plu) < + P+ ’ =
it can be easily shown that

C. ACIS Method Properties P(u)log P(u) — P(v)log P(v) < %(1 -8. 2”)8 .9t
n
Lemma 2: The sized of the normalized interval, %) is at least Then
22 | | r(u) = B[C(u)] = H(u)
Proof: Consider a closed intervfll, g], g = h—1+40, 111---. N N

Then its size _ Ze(di) —Z—P(ai)logP(ai)
d=h—1=|g|+1-1 = i=1

There are three variants of normalized intervals possjbie, 11x], < Z <P(“"‘) log P(ai) = P(v)log P(v)

[00%, 10%], and [01x, 11%], wherex denotest — 2 arbitrary binary =t . _

digits. The size of the interval in the first case is greater than that +8¢ 2 —16 2 )

in the second case, the second and the third cases being equivalent. (1—2742 1—2-1

For the second case we have

A 1 1 2
27" -

< ;8 Lm Tt t(1—2*t)}

N
Hence <y 827 =8N

=1

If the message lengtlh is finite then, according to Theorem 1,
homophonic encoding of the final interval adds to the code sequence

Theorem 3: Let there be given a messadé = wjuz---uz, 3 bits on average and the first proposition of the theorem is proved.
generated by a source over the alphabet {a1, a2, ---, ay} and The second proposition is based on the observation that we must
probability distributionP(a1), P(a2),---, P(an) for every symbol storel, k, and several auxilliary bit variables while the rest of data
u € U. Apply to the messag® the ACIS method, the interval have sizes independent of The estimate of the computation time

1<27% -1 lg] >2-2"2

d>2-272 412"+ 1)=2"72+2. O
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is determined by asymptotic complexity ofbit multiplication and Hence

division (see Scbrihage—Strassen algorithm in [11]). O 5 16.-2t
N,(.‘ (u) <24+ ——
Corollary 2: The memory sizeM and the time7, seen as P(u)
functions ofr, r — 0, are determined by the estimates and the expected value over the alphalet
M =0(log 1/7)

N
(3 (3 . ro—t
T =0O(log1/rloglog 1/rlogloglog 1/7). (20) E[Aﬁ )(u)] - 2P<ai)m£ (@) <2+16N27".
o ) Splitting an interval may be invoked many times. For the first
D. Realization of Interval Selection time, N source letters are distributed over the normalized interval
To pick one interval from three or two homophonic intervals witland it is necessary to pick one of three homophonic intervals.
probability proportional to its size we suggest a simple (but obvious§ubsequently, one of two intervals is to be picked within the entire
not optimal with respect to the number of random bits) method. range. Furthermore, up to 12 random bits on average are to be used
Let there be given three intervald, B, C' with sizesa, b, ¢.  for homophonic encoding of the final interval according to Theorem
Assume that they are ordered by size:> ¢ > b. Consider the 1. Therefore,
interval Z to be a concatenation of, B, (', z = a 4+ b + ¢ (note . : } ot _
that the shortest interval lies between longer ones). N < E[A'@(“)] + (V-2 P 24272+ ) +12/L
Divide the intervalZ into two equal parts and mark either the <24 24N2~" 4+ 12/L.
left or the right part according to a random bit value. If the marked =~ .
part fits entirely withinA, B, or C then the corresponding interval Taking into account the estimate of redundancy (18) completes the
is chosen. Otherwise, contrat to its marked part and repeat thePro0f: =
process from the beginning.
It is obvious that the probability of a choice will be proportional VI. A GENERAL METHOD

to the size of the interval. |nC|’eaSing arithmetic preCiSion with each The present method introduces a class of codes, based on a certain
subsequent division may be avoided by scaling the marked paft ofcombination of the methods described earlier, to solve the coding
to its full size together with doubling the remaining partsfofB, C'. problem when both redundancy and a number of random bits are

A question arises how many random bits we need to make a choiggecified. To meet these requirements we suggest to encode blocks
The following two lemmas can be easily proved. of symbols by means of the ACIS method. If the size of a block is

Lemma 3: For making a choice between two intervals no morgwen aboutz/nf random bits are expected to be used per one symbol.
than two random bits are required on average. Denote by)” = uyu, - um @ block ofm symbols. For ease of
designation assume that is a power of2 and the message length
Lemma 4: To make a choice between three intervals no more thahis a multiple ofm, m = 27, L mod m = 0. The messag& may
three random bits are required on average. be represented &8 = Y1Y,---Y;,,,, whereY is a letter of the
alphabetd™. DefineQ(Y), andQ(Y") in the same manner as for.

In the encoding method we must choose between intefvals —, T ) -
Let the individual letter and cumulative probabilities be

andV'*. The size ofi’ is usually much greater than the sizesiof

andV*. Besides, the problem of choice may arise many times fora ~ P(u1) =p{ /80, -+, P(um) = po/bo
symbol being encoded. A more accurate estimate of the number of Qlur) =0 /80, -+ Qum) = 0% /60 m =92,
random bits consumed is given by the following. T e
Compute
Theorem 4: For the ACIS encoding there exists a method of 9l =il s im1 il
. S . Vi =Usp 10i—1+ pop 1V

choosing a homophonic interval for which the average number of : ol ;
random bitsV,. used per source symbal satisfies the inequality Pk = P2k—1P2k » k=12, m/2

b =(6:-1)", i=1,2,---, 0.

ThenQ(Y) = 97 /6., Q(Y) = (p{ +97) /6, and we may apply the
wherer(u) is the code redundancy(u) — 0, and L is the message ACIS method to encode and decobie Note only that in decoding,

Ny(u)y <2+7r(u)+9/L

length. taking the next letter of the alphabet, should be replaced by taking
Proof: For any interval sizes, b, c there exists an integet  the lexicographically next block, the task being apparently solved in
such that O(m) time.

According to Theorem 3, the redundancy per blog") <

k k41 )
(2" =D +ec)<a<(2 -1 +e). (1) gnmio—t + 3m/L. Hence, the redundancy per letter
Denote by N\*) the average number of random bits to pick the r(u) = r(Y) < SN2 n 3
interval A, B, or C m m L
Nﬁg) <1x 1 2% 1 4k ik F(k+3)x LA —94 ik And by Theorem 4 the average number of random bits
2 4 2 2 2 N () = NY) 24rY)+9m/L 2 " 9
In the ACIS encoding, homophonic intervdls V', and V' take Nelu) = m S m =m T )+ i
the part of the intervalst, B, andC', respectively. So we have To meet specified upper bounds for both redundaméyw)) and a
s=dp(u) bde<25 d>272 (22) nhumber of random bitsV;" (u)), first, takem satisfying the inequality
(using Lemma 2 for the last inequality). Combining (22) and the 2/m < N (u) =" (u) = 9/L
right part of (21) obtain and, next, take such that
dp(u) _ 20 _, _ m(r*(u) —3/L)
ok 5 2P 2 Pw). o=t < M W) Z 978
T RS T T
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Notice that if random bit consumption is not restricted then, to Strongly Universal Hashing and
obtain specified redundancy, the pure ACIS method is to be used Identification Codes via Channels
and estimates of the memory size and computation time are given
by (3). If random bit consumption is restricted to be as low as Kaoru KurosawaMember IEEE and Takuya Yoshida

possible ¢r bits, » — 0) then we have to use the BHC method
whose estimates of the memory size and computation time are given

, ATH : ) ; Abstract—This correspondence shows that-almost strongly universal
by (2). If 4 < N;’ < 2+ r then the block version of the ACIS classes of hash functions can yield better explicit constructions of identifi-

method is to be applied whose complexity is intermediate betweghion codes via channels (ID codes) and identification plus transmission
(2) and (3). codes (IT codes) than the previous explicit constructions of Verd and
From the above consideration we can derive the following theorefyei.

Theorem 5: If the redundancy- and the number of random bits Index Terms—Binary constant-weight code, explicit construction, iden-
. . . tification code via channels, universal hash function.

N, are tied together by the equatiow. = cr, wherec may be a

constant or a function of, then the following asymptotic estimates

of the memory sizel! and computation tim&" are valid: |. INTRODUCTION
M= ()< 1 + log Nr) Suppose that a transmitter sends a messagea receiver through
N, r a communication channel with Shannon capagity by encoding
and message. An (n, W, A1) transmission code is a code which satisfies
N, N, . . .
T=0 <10g2 Nlr log log \1 + log N, log <\1 log N, ) Pr[a is selectefl: is transmittefl > 1 — A, (1)
N, N, r N, r

N, )) for each message where each codeword has lengtland there are

1
x loglog <ﬁ + log W messages. The rate of the transmission code is defined as

”
asr — 0. R 2 logW/n.
Note that whene is constant, i.e. N, is proportional tor, we
obtain the estimates (2). {fis in reverse proportion te, i.e., N, is Shannon proved thahax R, is equal toC's for any arbitrarily small
constant, the estimates (3) are obtained. A1. This model implicitly assumes the following.
1) A bijection from messages to codewords exists (deterministic
encoding).

2) Also, the decoding regions of messages are disjoint and the
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