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Abstract
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1. Introduction1

Nonparametric testing of independence in time series is very important in statistical
applications. There is an extensive literature dealing with nonparametric independence3
testing. We mention only the well-known methods that are based on the chi-square tests
(see for review Kendall and Stuart, 1961) and the classical papers of Hoeffding (1948) and5
Blum et al. (1961); quite a full review can also be found in Ghoudi et al. (2001).

In this paper, we consider a source (or process), which generates elements from a finite7
set A and the following two hypotheses: H0 that the source is Markovian one of order not
larger than m, (m�0), and the alternative hypothesis H1 that the sequence is generated by9
a stationary and ergodic source, which differs from the source under H0. The test should be
based on a sample x1 . . . xt generated by the source.11

For example, the sequence x1 . . . xt might be a DNA-string and one can consider the
question about the depth of the statistical dependence.13

We suggest a family of tests that are based on so-called universal predictors (or universal
data compression methods). The Type I errors of the tests are not larger than a given �(� ∈15
(0, 1)) for any source under H0, whereas the Type II error for any source under H1 tends to
0, when the sample size t grows.17

The tests are based on results and ideas of Information Theory and, especially, on those
of universal coding. Informally, the idea of the tests can be described as follows. Suppose19
that the source generates letters from an alphabet A and one wants to test H0 (the source
is Markovian of order m, m�0). First we recall that there exist so-called universal codes21
which, loosely speaking can “compress” any sequence of length t generated by a stationary
and ergodic source, to the length th∞ bits, where h∞ is the limiting Shannon entropy as t23
tends to infinity. Secondly, it is well known in Information Theory that h∞ equals mth-order
(conditional) Shannon entropy hm, if H0 is true, and h∞ is strictly less than hm if H1 is true.25
So, the following test appears natural: compress the sample sequence x1 . . . xt by a universal
code and compare the length of the obtained file with th∗

m, where h∗
m is an estimate of hm.27

If the length of the compressed file is significantly less than th∗
m, then the hypothesis H0

should be rejected.29
It is no surprise that the results and ideas of universal coding can be applied to some

classical problems of mathematical statistics. In fact, methods of universal coding (and the31
closely connected universal prediction) extract information from observed data in order to
compress (or predict) data efficiently in the case where the source statistics is unknown.33
Recently such a connection between universal coding and mathematical statistics was used
by Csiszár and Shields (2000) for estimating the order of Markov sources and by Ryabko35
and Monarev (2005) for constructing efficient tests for randomness, i.e. for testing the
hypothesis Ĥ0 that a sequence is generated by a Bernoulli source and all letters have equal37
probabilities against Ĥ1 that the sequence is generated by a stationary and ergodic source,
which differs from the source under Ĥ0.39

The outline of the paper is as follows. The next part contains definitions and nec-
essary information from the theory of universal coding and universal prediction. Part41
three is devoted to testing the above described hypotheses. All proofs are given in the
appendix.43
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2. Definitions and preliminaries1

Consider an alphabet A={a1, . . . , an} with n�2 letters and denote by At the set of words
x1 · · · xt of length t from A. Let p be a source which generates letters from A. Formally, p is3
a probability distribution on the set of words of infinite length or, more simply, p= (pt )t �1
is a consistent set of probabilities over the sets At ; t �1. By M∞(A) we denote the set of5
all stationary and ergodic sources, which generate letters from A. Let Mm(A) ⊂ M∞(A)

be the set of Markov sources of order m, m�0. More precisely, p ∈ Mm(A) if7

p(xt+1 = ai1/xt = ai2 , xt−1 = ai3 , . . . , xt−m+1 = aim+1 , . . .)

= p(xt+1 = ai1/xt = ai2 , xt−1 = ai3 , . . . , xt−m+1 = aim+1)

for all t �m and ai1 , ai2 , . . . ∈ A. By definition, M0(A) is the set of all Bernoulli (or i.i.d.)9
sources over A.

2.1. Universal prediction11

Now we briefly describe some results and methods of universal coding and prediction,
which will be used later. Let a source generate a message x1 . . . xt−1xt . . . and let �t (a)13
denote the count of letter a occurring in the word x1 . . . xt−1xt . After the first t letters
x1, . . . , xt−1, xt have been processed the following letter xt+1 is to be predicted. By defini-15
tion, a prediction is a set of nonnegative numbers �(a1|x1 · · · xt ), . . . , �(an|x1 · · · xt ) which
are estimates of the unknown conditional probabilities p(a1|x1 · · · xt ), . . . , p(an|x1 · · · xt ),17
i.e. of the probabilities p(xt+1 = ai |x1 · · · xt ); i = 1, . . . , n.

Laplace suggested the following predictor:19

L(a|x1 · · · xt ) = (�t (a) + 1)/(t + |A|), (1)

where |A| is the number of letters in the alphabet A, see Feller (1970). For example, if21
A={0, 1}, x1 . . . x5 =01010, then the Laplace prediction is as follows: L(x6 =0|01010)=
(3 + 1)/(5 + 2) = 4

7 , L(x6 = 1|01010) = (2 + 1)/(5 + 2) = 3
7 .23

In Information Theory the error of prediction often is estimated by the Kullback–Leibler
(K–L) divergence between a distribution p and its estimate. Consider a source p and a25
predictor �. The error is characterized by the divergence

��,p(x1 · · · xt ) =
∑

a∈A

p(a|x1 · · · xt ) log
p(a|x1 · · · xt )

�(a|x1 · · · xt )
. (2)

27

(Here and below log ≡ log2.) It is well known that for any distributions p and � the K–L
divergence is nonnegative and equals 0 if and only if p(a)=�(a) for all a, see, for example,29
Gallager (1968), that is why the K–L divergence is a natural estimate of the prediction error.
For a fixed t, ��,p is a random variable, because x1, x2, . . . , xt are random variables. We31
define the average error at time t by

�t (p‖�) = E(��,p(·)) =
∑

x1···xt∈At

p(x1 · · · xt )��,p(x1 · · · xt ).
33
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It is known that the error of the Laplace predictor goes to 0 for any Bernoulli source p. More1
precisely, it is proven that

�t (p‖L) < (|A| − 1)/(t + 1) (3)3

for any source p; Ryabko (1990) (see also Ryabko and Topsoe, 2002).
Obviously, the convergence to 0 of a predictor’s error for any source from some set M5

is an important property. For example, we can see from (3) that it is true for the Laplace
predictor and the set of Bernoulli sources M0(A). Unfortunately, it is known that a predictor,7
for which error (2) goes to 0 (with probability 1) for any stationary and ergodic source, does
not exist. More precisely, for any predictor � there exists a stationary and ergodic source p̃,9
such that lim supt→∞ ��,p̃(x1 · · · xt )�const > 0 with probability 1; Ryabko (1988). (See
also Algoet, 1999; Morvai et al., 1997; Nobel, 2003, where this result is generalized and11
the history of its discovery is described. In particular, they found out that such a result was
described by Bailey, 1976 in his unpublished thesis.) That is why it is difficult to use (2) for13
comparison of different predictors. On the other hand, it is shown in Ryabko (1984, 1988)
that there exists a predictor R, such that the following average t−1∑t

i=1 �R,p(x1 · · · xt ) goes15
to 0 (with probability 1) for any stationary and ergodic source p, where t goes to infinity.
That is why we will focus our attention on such averages. First, we define for any predictor17
� the following probability distribution:

�(x1 . . . xt ) =
t∏

i=1

�(xi |x1 . . . xi−1).
19

For example, we obtain for the Laplace predictor L that L(0101) = 1
2

1
3

1
2

2
5 = 1

30 , see (1).
Then, by analogy with (2) we will estimate the error by K–L divergence and define21

�̄�,p(x1 . . . xt ) = t−1(log(p(x1 . . . xt )/�(x1 . . . xt ))) (4)

and23

�̄t (�, p) = t−1
∑

x1...xt∈At

p(x1 . . . xt ) log(p(x1 . . . xt )/�(x1 . . . xt )). (5)

For example, from those definitions and (3) we obtain the following bound for the Laplace25
predictor L and any Bernoulli source p: �̄t (L, p) < ((|A| − 1) log t + c)/t , where c is a
constant.27

The universal predictors will play a key rule in the tests suggested below. By definition,
a predictor � is called universal (in average) for a class of sources M, if for any p ∈ M29
the error �̄t (�, p) goes to 0, when t goes to infinity. A predictor � is called universal with
probability 1, if the error �̄�,p(x1 . . . xt ) goes to 0 not only in average, but for almost all31
sequences x1x2 . . . . In short, we will say that the predictor (or probability distribution) � is
universal, if limt→∞ �̄�,p(x1 . . . xt ) = 0 is valid with probability 1 for any stationary and33
ergodic source p (i.e. for any p ∈ M∞(A)). Now there are quite many known universal
predictors. One of the first such predictors has been described in Ryabko (1984, 1988).35
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2.2. Universal coding1

This short subparagraph is intended to give some explanation about why and how methods
of data compression can be used for testing of independence. The point is that the prediction3
problem is deeply connected with the theory of universal coding. Moreover, practically used
data compression methods (or so-called archivers) can be directly applied for testing.5

Let us give some definitions. Let, as before, A be a finite alphabet and, by definition,
A∗ = ⋃∞

n=1A
n and A∞ is the set of all infinite words x1x2 . . . over the alphabet A. A data7

compression method (or code) � is defined as a set of mappings �n such that �n : An →
{0, 1}∗, n = 1, 2, . . . and for each pair of different words x, y ∈ An �n(x) �= �n(y).9
Informally, it means that the code � can be applied for compression of each message of any
lengthn, n > 0,over alphabet A and the message can be decoded if its code is known. Further,11
it is required that each sequence �n(x1)�n(x2) . . .�n(xr), r �1, of encoded words from
the set An, n�1, can be uniquely decoded into x1x2 . . . xr . Such codes are called uniquely13
decodable. For example, let A = {a, b}, the code �1(a) = 0,�1(b) = 00, obviously, is not
uniquely decodable. (Indeed, the word 000 can be decoded in both ab and ba.) It is well15
known that if a code � is uniquely decodable then the lengths of the codewords satisfy the
following inequality (the Kraft inequality):17

∑

u∈An

2−|�n(u)| �1,

see, for example, Gallager (1968). It will be convenient to reformulate this property as19
follows:

Claim 1. Let � be a uniquely decodable code over an alphabet A. Then for any integer n21
there exists a measure �� on An such that

− log ��(u)� |�(u)| (6)23

for any u from An. (Obviously, it is true for the measure ��(u) = 2−|�(u)|/�u∈An2−|�(u)|.)
It is well known that sequences x1 . . . xt , generated by a stationary and ergodic source p,25
can be“compressed” till the length − log p(x1 . . . xt ) bits. There exist so-called universal
codes, which, in a certain sense, are the best “compressors” for all stationary and ergodic27
sources. The formal definition is as follows: a code � is universal if for any stationary and
ergodic source p29

lim
t→∞ t−1(− log p(x1 . . . xt ) − |�(x1 . . . xt )|) = 0

with probability 1. So, informally speaking, the universal codes estimate the probability31
characteristics of the source p and use them for efficient “compression”.

3. The tests33

In this paragraph we describe the suggested tests. First, we give some definitions. Let
v be a word v = v1 . . . vk, k� t, vi ∈ A. Denote the rate of a word v occurring in the35
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sequence x1x2 . . . xk , x2x3 . . . xk+1, x3x4 . . . xk+2, . . ., xt−k+1 . . . xt by �t (v). For example,1
if x1 . . . xt =000100 and v =00, then �6(00)=3. Now we define for any k�0 the so-called
empirical Shannon entropy of order k as follows:3

h∗
k(x1 . . . xt ) = − 1

(t − k)

∑

v∈Ak

�̄t (v)
∑

a∈A

(�t (va)/�̄t (v)) log(�t (va)/�̄t (v)), (7)

where k < t and �̄t (v) = ∑
a∈A �t (va). In particular, if k = 0, we obtain5

h∗
0(x1 . . . xt ) = −1

t

∑

a∈A

�t (a) log(�t (a)/t).

The suggested test is as follows.7
Let � be any probability distribution over At . The hypothesis H0 is accepted if

(t − m)h∗
m(x1 . . . xt ) − log(1/�(x1 . . . xt ))� log(1/�), (8)9

where 0 < �< 1. Otherwise, H0 is rejected. We denote this test by Υ t
�, �,m.

Theorem. (i) For any predictor (or measure) � the Type I error of the test Υ t
�,�,m is less11

than or equal to �, � ∈ (0, 1).
(ii) If � is a universal predictor (measure) (i.e., by definition, for any p ∈ M∞(A)13

lim
t→∞ t−1(− log p(x1 . . . xt ) − log(1/�(x1 . . . xt ))) = 0 (9)

with probability 1), then the Type II error goes to 0, when t goes to infinity.15

The proof is given in Appendix.

Comment. Let � be a uniquely decodable code (or a data compression method). Define17
the test Υ̂ t

�, �,m as follows: The hypothesis H0 is accepted if

(t − m)h∗
m(x1 . . . xt ) − |�(x1 . . . xt )|� log(1/�), (10)19

where � ∈ (0, 1). Otherwise, H0 is rejected.
We immediately obtain from the Theorem 1 and the Claim 1 the following statement.21

Claim 2. (i) For any uniquely decodable code � the Type I error of the test Υ̂ t
�,�,m is less

than or equal to �, � ∈ (0, 1).23
(ii) If � is a universal code, then the Type II error goes to 0, where t goes to infinity.

4. Conclusion25

The tests described above can be based on known universal codes (or so-called archivers)
which are widely used for text compression everywhere. It is important to note that, on the27
one hand, the universal codes and archivers are based on results of Information Theory, the
theory of algorithms and some other branches of mathematics; see, for example, Rissanen29
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(1984), Kieffer (1998), Kieffer andYang (2000), Effros et al. (2002). On the other hand, the1
archivers have shown high efficiency in practice as compressors of texts, DNA sequences
and many other types of real data. In fact, the archivers can find many kinds of latent3
regularities, which is why they look like a promising tool for independence testing and its
generalizations.5

The natural question is the possibility of generalizing the suggested tests for the case of
an infinite source alphabet A (say, A is a metric space.) Apparently, such a generalization7
can be done for the case of independence testing, if we will use a known technique of
partitioning; see Darbellay and Vajda (1998, 1999). But we do not know how to generalize9
the suggested tests for the case where H0 is that the source is Markovian. The point is that
the partitioning can increase the source order. For example, even if the alphabet A contains11
three letters and we combine two of them in one subset (i.e. a new letter) the order of the
obtained source can increase till infinity. Hence, the generalization to Markov sources with13
infinite alphabet can be considered as an open problem.

Appendix15

Proof of Theorem. First we show that for any Bernoulli source 	∗ and any word x1 . . . xt ∈
At, t > 1, the following inequality is valid:17

	∗(x1 . . . xt ) =
∏

a∈A

	(a)�
t (a) �

∏

a∈A

(nut (a)/t)�
t (a). (11)

Indeed, the equality is true, because 	∗ is a Bernoulli measure. The inequality follows from19
the well-known inequality

∑
a∈A p(a) log(p(a)/q(a))�0, for K–L divergence, which is

true for any distributions p and q (see, for example, Gallager (1968)). So, if p(a) = �t (a)/t21
and q(a) = 	∗(a), then

∑

a∈A

�t (a)

t
log

(�t (a)/t)

	(a)
�0.

23

From the last inequality we obtain (11).
Let now 	 belong to Mm(A), m > 0. We will prove that for any x1 . . . xt25

	(x1 . . . xt )�
∏

u∈Am

∏

a∈A

(�t (ua)/�̄t (u))�
t (ua). (12)

Indeed, we can present 	(x1 . . . xt ) as27

	(x1 . . . xt ) = 	∞(x1 . . . xm)
∏

u∈Am

∏

a∈A

	(a/u)�
t (ua),

where 	∞(x1 . . . xm) is the limit probability of the word x1 . . . xm. From the last equality29
we can see that

	(x1 . . . xt )�
∏

u∈Am

∏

a∈A

	(a/u)�
t (ua).

31
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Taking into account inequality (11), we obtain1
∏

a∈A

	(a/u)�
t (ua) �

∏

a∈A

(�t (ua)/�̄t (u))�
t (ua)

for any word u. So, from the last two inequalities we obtain (12).3
It will be convenient to define an auxiliary measure on At as follows:


m(x1 . . . xt ) = �2−(t−m) h∗
m(x1...xt ), (13)5

where x1 . . . xt ∈ At and � = (
∑

x1...xt∈At 2−(t−m) h∗
m(x1...xt ) )−1 . If we take into account

that 2−(t−m) h∗
m(x1...xt ) = ∏

u∈Am

∏
a∈A (�t (ua)/�̄t (u))�

t (ua), we can see from (12) and (13)7
that, for any measure 	 ∈ Mm(A) and any x1 . . . xt ∈ At ,

	(x1 . . . xt )�
m(x1 . . . xt )/�. (14)9

Let us denote the critical set of the test Υ t
�,�,m as C� i.e., by definition,

C� = {x1 . . . xt : (t − m)h∗
m(x1 . . . xt ) − log(1/�(x1 . . . xt )) > log(1/�)}. (15)11

From (14) and this definition we can see that for any measure 	 ∈ Mm(A)

	(C�)�
m(C�)/�. (16)13

From definitions (15) and (13) we obtain

C� = {x1 . . . xt : 2(t−m)h∗
m(x1...xt ) > (��(x1 . . . xt ))

−1}
= {x1 . . . xt : (
m(x1 . . . xt )/�)−1 > (��(x1 . . . xt ))

−1}.15

Finally,

C� = {x1 . . . xt : �(x1 . . . xt ) >
m(x1 . . . xt )/(��)}. (17)17

The following inequalities and equalities are valid:

1�
∑

x1...xt∈C�

�(x1 . . . xt )�
∑

x1...xt∈C�


m(x1 . . . xt )/(��)

= 
m(C�)/(��)�	(C�)�/(��) = 	(C�)/�.19

(Here both equalities and the first inequality are obvious, the second inequality and the
third one follow from (17) and (16), correspondingly.) So, we obtain that 	(C�)�� for any21
measure 	 ∈ Mm(A). Taking into account that C� is the critical set of the test, we can see
that the probability of the Type I error is not greater than �. The first claim of the theorem23
is proven.

The proof of the second statement of the theorem will be based on some results of25
Information Theory. The t-order conditional Shannon entropy is defined as follows:

ht (p) = −
∑

x1...xt∈At

p(x1 . . . xt )
∑

a∈A

p(a/x1 . . . xt ) log p(a/x1 . . . xt ), (18)
27

where p ∈ M∞(A). It is known that for any p ∈ M∞(A) firstly, log |A|�
h0(p)�h1(p)� . . ., secondly, the following limit Shannon entropy h∞(p)=limt→∞ ht (p)29
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exists, thirdly, limt→∞ −t−1 log p(x1 . . . xt )=h∞(p) with probability 1 and, finally, hm(p)1
is strictly greater than h∞(p), if the memory of p is larger m, (i.e. p ∈ M∞(A)\Mm(A)),
see, for example, Billingsley (1965), Gallager (1968).3

Taking into account the definition of the universal predictor (see (9)), we obtain from the
above described properties of the entropy that5

lim
t→∞ −t−1 log �(x1 . . . xt ) = h∞(p) (19)

with probability 1. It can be seen that h∗
m (7) is a consistent estimate for the m− order7

Shannon entropy (18), i.e. lim
t→∞ h∗

m(x1 . . . xt ) = hm(p) with probability 1; see Billingsley

(1965), Gallager (1968). Having taken into account that hm(p) > h∞(p) and (19) we obtain9
from the last equality that limt→∞ ((t − m)h∗

m(x1 . . . xt ) − log(1/�(x1 . . . xt ))) = ∞. This
proves the second statement of the theorem. �11

References

Algoet, P., 1999. Universal schemes for learning the best nonlinear predictor given the infinite past and side13
information. IEEE Trans. Inform. Theory 45, 1165–1185.

Bailey, D.H., 1976. Sequential schemes for classifying and predicting ergodic processes. Ph.D. Dissertation,15
Stanford University.

Billingsley, P., 1965. Ergodic Theory and Information. Wiley, New York.17
Blum, J.R., Kiefer, J., Rosenblatt, M., 1961. Distribution free tests of independence based on the sample distribution

function. Ann. Math. Statist. 32, 485–498.19
Csiszár, I., Shields, P., 2000. The consistency of the BIC Markov order estimation. Ann. Statist. 6, 1601–1619.
Darbellay, G.A., Vajda, I., 1998. Entropy expressions for multivariate continuous distributions. Research Report21

No. 1920, UTIA, Academy of Science, Prague (library@utia.cas.cz).
Darbellay, G.A., Vajda, I., 1999. Estimation of the mutual information with data-dependent partitions. IEEE Trans.23

Inform. Theory 48 (5), 1061–1081.
Effros, M., Visweswariah, K., Kulkarni, S.R., Verdu, S., 2002. Universal lossless source coding with the Burrows25

Wheeler transform. IEEE Trans. Inform. Theory 48 (5), 1061–1081.
Feller, W., 1970. An Introduction to Probability Theory and its Applications, vol. 1. Wiley, New York.27
Gallager, R.G., 1968. Information Theory and Reliable Communication. Wiley, New York.
Ghoudi, K., Kulperger, R.J., Remillard, B., 2001. A nonparametric test of serial independence for time series and29

residuals. J. Multivariate Anal. 79 (2), 191–218.
Hoeffding, W., 1948. A nonparametric test of independence. Ann. Math. Statist. 19, 546–557.31
Kendall, M.G., Stuart, A., 1961. The Advanced Theory of Statistics, vol. 2. Inference and Relationship. Charles

Griffin, London.33
Kieffer, J., 1998. Prediction and Information Theory, Preprint (available at

ftp://oz.ee.umn.edu/users/kieffer/papers/prediction.pdf/).35
Kieffer, J.C.,Yang, E.H., 2000. Grammar-based codes: a new class of universal lossless source codes. IEEE Trans.

Inform. Theory 46 (3), 737–754.37
Morvai, G., Yakowitz, S.J., Algoet, P.H., 1997. Weakly convergent nonparametric forecasting of stationary time

series. IEEE Trans. Inform. Theory 43, 483–498.39
Nobel, A.B., 2003. On optimal sequential prediction. IEEE Trans. Inform. Theory 49 (1), 83–98.
Rissanen, J., 1984. Universal coding, information, prediction, and estimation. IEEE Trans. Inform. Theory 30 (4),41

629–636.
Ryabko, B., Monarev, V., 2005. Using information theory approach to randomness testing. J. Statist. Plann.43

Inference 133 (1), 95–110.
Ryabko, B., Topsoe, F., 2002. On asymptotically optimal methods of prediction and adaptive coding for Markov45

sources. J. Complexity 18 (1), 224–241.

ftp://oz.ee.umn.edu/users/kieffer/papers/prediction.pdf/


UNCORRECTED P
ROOF

10 B. Ryabko, J. Astola / Journal of Statistical Planning and Inference ( ) –

JSPI2904

ARTICLE IN PRESS

Ryabko, B.Ya., 1984. Twice-universal coding. Problems Inform. Transmission 20 (3),1
Ryabko, B.Ya., 1988. Prediction of random sequences and universal coding. Problems Inform. Transmission 24

(2), 87–96.3
Ryabko, B.Ya., 1990. A fast adaptive coding algorithm. Problems Inform. Transmission 26 (4), 305–317.


	Universal codes as a basis for nonparametric testing of serial independence for time series62626262
	Introduction
	Definitions and preliminaries
	Universal prediction
	Universal coding

	The tests
	Conclusion
	References




