
Technical Correspondence

A LOCALLY ADAPTIVE DATA
COMPRESSION SCHEME
I would like to mention that the main results of the
paper “A Locally Adaptive Data Compression Scheme”
by Bentley, Sleator, Tarjan, and Wei [l] coincides with
many of the results of my paper “Data Compression by
Means of a ‘Book Stack”’ [3].

Both papers deal with the encoding of words over an
alphabet A. Each letter is given a code in order to make
the code length of a word as small as possible. The
frequencies of letters are not known a priori.

The same coding procedure was developed in both
papers. It is called “book stack” in my paper and
“move-to-front” in theirs. It is as follows: the alphabet A
coincides as a stack of books. As soon as a letter occurs,
the corresponding “book” is taken from the stack out-
put on its top, etc. If a letter is located on the ith place
in the stack, then its code length is f(i). There are
codes with f(i) = (1) 1 + 2 Llog iJ, (2) 1 + log iJ +
2 Llog(l + 1ogi)J. (3) 1 + Llogil + Llog(1 + 1ogi)J +
2Llog(l + (1 + logi))J, (4) Llog iJ + Llog(1 + logn)J, and
(5) Llogil + Llog(l + 1ogi)J + Llog(1 + log(l + 1ogn)J.

The optimal universal code for monotonic source
from my paper “Encoding of a Source with Unknown
but Ordered Probabilities” [2] is used in their paper.
For that encoding f(i) = log i + log log n + O(1). If A is a
countable alphabet. then f(i) = log i + O(loglogi). So, in
both papers, the code length equals log i to within an
addend o(loglog).

There are upper bounds for the average code length:
H + loglogn + O(1) in theirs; and H + 1 + 21og(l + H).
where H denotes the entropy, in mine.

I believe that the discussed coding procedure has
many attractive features: It is simple to implement, it
does not require a priori knowledge of source statistics,
and it yields the average code length arbitrarily closed
to the entropy (if applied to the blocks of letters). Those
features are described in both papers.

B.Y. Ryabko
Kropotkin Street 118-426
Novosibirsk-2
USSR, 630 002

REFERENCES
1. Brmtley. I.L.. Slealor. D.D.. Tarjan. R.E., and Wei. V.K. A locally

adaplive data compression scheme. Conwr~utt. ACM 29, 4 (Apr. 1986).
320-330.

2. Ryabko. B.Y. Encoding of a source with unknown but ordered prob-
abilities. Prob. Jnf. Trmsm. (1979).

3. Ryabko. B.Y. Data compression by means of a “book stack.” Prob. Jrtf.
Transm. 16. 4 (1980). (There is an English translation by Consultants
Bureau. New York. 1981.)

A recent paper [l] describes a data compression scheme
that resembles one we have investigated [7]. Although
our paper was not published, the main results appeared
shortly afterwards in the proceedings of a conference
[8]. Some of our experimental results should be of in-
terest to readers because they address som1a of the ques-
tions raised in the paper. We also have some observa-
tions to make about the paper.

Like Bentley et al., we used a list of words and en-
coded words using their index positions in the list. We
also organized the list so that the words most likely to
be used were at the front and used a coding scheme for
index positions so that small index values had shorter
encodings. We observed that maintaining a list of words
or tokens where a maximum length restriction is im-
posed on the list is very similar to the page replacement
problem in virtual-memory computer systems [5].
Almost any page replacement algorithm is usable for
deciding which words or tokens should be kept in the
list and for determining the order of items in the list.
The move-to-the front heuristic, examined in (11, is
identical to the least-recently-used (LRU) page replace-
ment policy. In our paper we experimentally compared
the compression performance using the well-known
paging policies of LRU, FIFO (first in, first out), LFU
(least frequently used), second chance, and. climb (also
known as the transposition heuristic) [6, 101. In the
cases of FIFO and second chance, the policies do not
impose a natural ordering on items in the list. We sim-
ply ordered the list according to age-the words or
tokens added to the list most recently are kept at the
front. The comparative performance of the five meth-
ods are summarized in Table I. (These results appeared
as Table 3 in [i’].) The table shows the percent reduc-
tion in size as a function of three factors, namely, the
replacement policy, the maximum size of the list, and
the kind of data being compressed. On the whole, FIFO
does not perform as well as the other policies. There is
little choice, however, among these five policies. In our
opinion, the policy that is the easiest to implement
should be used and we believe this policy is climb.
With the climb policy, a word or token advances one
position closer to the front of the list each ltime it is
used. It causes fewer implementation headaches be-
cause no more than two tokens must have their index
positions updated in the hash table with each access.

We have some further comments to add. First, in the
two-pass experimental version of their compression
scheme, Bentley et al. use Huffman coding to encode
index positions in the list. Later in the paper, a number
of static coding schemes that use about log(i) bits to
encode the integer i are suggested. The use of any fixed

792 Communications of the ACM September 1987 Volume 30 Number 9

Technical Correspondence

coding scheme corresponds to making an assumption
about the distribution of accesses to different list posi-
tions. We suggest that adaptive Huffman coding is the
ideal method to use. Character-level adapiive Huffman
coding is also appropriate in encoding words or tokens
when they are encountered for the first time.

Second, in the “Remarks” section of their paper, a
scheme is suggested for making dynamic Huffman cod-
ing locally adaptive. This involves incrementing the
weight for a word each time it is used and periodically
multiplying all weights by a factor less than 1. (This has
the effect of making recent uses of a word count more
than less recent uses.) This multiplication generally
requires redetermination of the entire set of Huffman
codes, due to the truncation error in multiplying the
counts by a factor less than 1. The truncation error also
results in codes that are suboptimal. We would like to
point out that the same effect can be achieved without
information loss if weights are incremented by ever-
increasing amounts. For example, the increments could
be 1, 2, 4, 8, etc. Algorithms for maintaining Huffman

codes when weights increase by non-unit amounts
appears in [3].

Finally, we question whether or not the performance
results are good enough to justify the complexity of the
implementation. Although the scheme beats Huffman
coding by a reasonable margin, its compression per-
formance is inferior to that of Ziv-Lempel compression
[ll], a compression method that is both simpler to im-
plement and executes much faster. Newer compression
methods by Cleary and Witten [Z] and Cormack and
Horspool [4. 91 achieve still better compression. Al-
though considerably slower than the Ziv and Lempel,
the latter scheme is competitive in speed with the
method described here.

R. Nigel Horspool
Department of Computer Science
University of Victoria
P.O. Box 1700
Victoria, British Columbia, Canada V8W 2Y2

and

TABLE I. Compression Factors

Test
Maximum length of list

Replacement policy file 16 32 64 128 256

Least recently used T 42.8 46.1 49.6 52.4 56.3
P 59.6 63.6 68.0 71.2 72.8
C 45.6 53.2 57.0 59.1 60.2
F 43.2 49.7 53.4 56.3 58.9
B 20.6 21.2 21.6 22.0 22.4

Least frequently used T 40.7 43.8 47.9 50.6 54.8
P 56.2 58.3 60.1 62.9 66.8
C 44.2 45.3 48.5 54.7 61.3
F 40.3 43.4 46.2 50.0 56.0
B 20.4 21.8 21.9 23.0 25.1

First in, first out T 38.6 41.4 42.7 43.9 47.2
P 56.0 60.0 62.9 65.1 66.9
C 43.4 48.7 51.4 54.6 57.4
F 40.3 44.9 46.5 47.9 53.0
B 16.1 13.5 11.1 9.0 11.2

T 40.5 44.1 50.0 52.7 56.6
P 57.6 63.7 68.5 71.7 73.3
c 44.6 53.2 57.2 59.5 59.0
F 41.8 49.0 53.4 56.1 58.8
B 17.3 17.2 17.9 19.8 24.5

Climb T 42.2 46.0 48.2 50.5 55.2
P 56.8 59.8 61.4 67.3 70.4
C 44.4 45.4 47.0 52.4 58.6
F 41.2 44.6 48.4 49.7 55.0
B 20.3 21.3 21.5 21.2 21.8

The test files were

T formatted text (73,385 bytes),
P Pascal source code (143,126 bytes),
C C source code (17.161 bytes),
F Fortran source code (40.975 bytes), and
6 binary object code (18,432 bytes).

Second chance

September 1987 Volume 30 Number 9 Communications of the ACM 793

Technical Correspondence

Gordon V. Cormack
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G7

REFERENCES
1. Bentley, J.L.. Sleator. D.D.. Tarjan, R.E.. and Wei, V.K. A locally

adaptive data compression scheme. Commun. ACM 29, 4 (Apr. 1986).
320-330.

2. Cleary, J.G., and Witten. I.H. Data compression using adaptive cod-
ing and partial string matching. IEEE Trans. Commun. COM-32, 4
(Apr. 1984). 396-402.

3. Cormack. G.V.. and Horspool. R.N. Algorithms for adaptive Hoffman
codes. Inf. Process. Left. 18. 3 (Mar. 1984). 159-166.

4. Cormack, G.V.. and Horspool. R.N.S. Data compression using dy-
namic Markov modelling. Comput. I. To be published.

5. Denning, P.J. Virtual memory. ACM Compuf. Sum 2, 3 (Sept. 1970).
153-189.

6. Franaszek, P.A., and Wagner. T.J. Some distribution-free aspects of
paging algorithm performance. \. ACM 21, 1 (Jan. 1974), 31-39.

7. Horspool. R.N., and Cormack, G.V. Data compression based on token
recognition. Oct. 1983. Unpublished manuscript.

8. Horspool. R.N.. and Cormack, G.V. A general purpose data compres-
sion technique with practical applications. In Proceedings of fhe CIPS
Smion 84 (Calgary. Alberta. May 9-11). 1984, pp. 138-141.

9. Horspool, R.N.. and Cormack, G.V. Dynamic Markov modelling-A
prediction technique. In Proceedings of fhe 19th Hawaii Infernafional
Conference on Sysfem Sciences (Honolulu, Hawaii, Jan. 7-10). 1986, pp.
700-707.

10. Rivest, R. On self-organizing sequential search heuristics. Commun.
ACM 19, 2 [Feb. 1976). 63-67.

11. Ziv, J., and Lempel. A. Compression of individual sequences via
variable-rate coding. IEEE Trans. Znfi Theory IT-24, 5 (Sept. 1976).
530-536.

CORRECTIONS TO “COMBINATORIALLY
IMPLOSIVE ALGORITHMS”
Set covering is an important tool for modeling abduc-
tive reasoning in artificial intelligence. It can be applied
to a wide range of problems such as diagnostic problem
solving [8, 11, 121, sequential error classification [l],
and natural-language processing [3], to mention but a
few. Extending on the ideas of set covering, a new lan-
guage for abductive logic, ABLOG-IC, is currently being
developed [z]. Several ideas of set covering have been
used in the past for developing expert systems (e.g.,
[7, 9, 10, 141). Set-covering concepts have also been
extended to fuzzy sets [IS], and work has been done
on developing a theory of diagnosis based on logic that
is similar to the set-covering approach [IS].

Recently, in reviewing the literature on this topic,
the authors came across the predicate covering algo-
rithms proposed by Kornfeld [S]. On careful review of
the proposed parallel algorithm BottomUp described
therein, several errors were encountered. This letter
specifically addresses those errors and gives the cor-
rected version of the algorithm. The errors are dis-
cussed in two stages: First, the typographical errors are
pointed out and corrected, followed by a list of logical
errors with corresponding corrections that the authors
recommend. The original version of the BottomUp
algorithm as it appears in [6] is presented for reference,
and some of the terms and concepts used in the algo-
rithm are defined.

A set of clauses is said to work with respect to a
predicate clause P, if P implies the disjunction of the

clauses in the set. A set of clauses that works is also
minimal if no subset of this set works (with respect to
the same predicate clause). A set that works is called a
cover and is called a minimal couer if it is al:so minimal.
An activity is a locus of control with some purpose. A
sprite is a pattern-invoked procedure associated with an
activity, which watches for assertions that match its
pattern in a global database. It is specified ;as a (when
[-pattern--] -body-) statement, where the body is
executed whenever a matching pattern is asserted. An
activity may spawn other subactivities. When an activ-
ity is stifled, it and all its subactivities stop processing.
The processing of an activity constitutes executing the
bodies of those sprites that are triggered by assertions in
that activity, and any Execute command associated
with the activity. The Execute command takes two
arguments: a procedure with its arguments,, and an ac-
tivity object that uniquely identifies an activity. It exe-
cutes the procedure in the activity associated with the
activity object. Activities and their identifying activity
objects are created by the NewAc t ivi t y command.
More about the above terms and concepts (can be found
in [4]-[6].

The BottomUp algorithm uses the Test:-
Workingness procedure that takes P, a predicate, and
set, a set of predicates, as its arguments. Test -
Workingness checks if set works with respect to P,

andasserts eitherWorks(set) or Notworks(set),
which may then trigger some sprites. The !3ottomUp
algorithm that appeared in [6] is presented below.

1 (defineBottomUp(Psetallpreds)
2 (foreachQE allpreds
3 (let ((activity(NewActivity)))
4 (if PfjLset
5 (Execute (TestWorkingness

P (set U (Q]}) activity)
6 (when ((NotWorks (setU (Qj))]
7 (Stifleactivity)
8 (BottomUp P (set U [Q))

allpreds)
9 (when [(NotWorks (setU (Q)))]

10 (Stifleactivity))
11 (when [(Works (set U (Q]))I
12 (Assert(WorkAndMinima1

IsetUlQll)))))))

Referring to the algorithm above, line 4 :is redundant
since the condition P @ set is always true. When the
first call is made to BottomUp, set is 0 and so, trivi-
ally, P f$ set. A subsequent call to BottomUp is made
in the first sprite, which calls BottomUp recursively,
with P, set U (Q],and allpreds as arguments,pro-
vided set U (Q) does not work (lines 6-8). Now, if
PE set U (~1, then set U (Qj would have worked,
and hence the recursive call itself would n.ot have been
made. Perhaps the original intention was to have the
test Q @ set instead. This would eliminate fruitless
recursive function calls such as (Bottomllp P [set U

794 Communications of the ACM September 1987 Volume 30 Number 9

