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A LOCALLY ADAPTIVE DATA 
COMPRESSION SCHEME 
I would like to mention that the main results of the 
paper “A Locally Adaptive Data Compression Scheme” 
by Bentley, Sleator, Tarjan, and Wei [l] coincides with 
many of the results of my paper “Data Compression by 
Means of a ‘Book Stack”’ [3]. 

Both papers deal with the encoding of words over an 
alphabet A. Each letter is given a code in order to make 
the code length of a word as small as possible. The 
frequencies of letters are not known a priori. 

The same coding procedure was developed in both 
papers. It is called “book stack” in my paper and 
“move-to-front” in theirs. It is as follows: the alphabet A 
coincides as a stack of books. As soon as a letter occurs, 
the corresponding “book” is taken from the stack out- 
put on its top, etc. If a letter is located on the ith place 
in the stack, then its code length is f(i). There are 
codes with f(i) = (1) 1 + 2 Llog iJ, (2) 1 + log iJ + 
2 Llog(l + 1ogi)J. (3) 1 + Llogil + Llog(1 + 1ogi)J + 
2Llog(l + (1 + logi))J, (4) Llog iJ + Llog(1 + logn)J, and 
(5) Llogil + Llog(l + 1ogi)J + Llog(1 + log(l + 1ogn)J. 

The optimal universal code for monotonic source 
from my paper “Encoding of a Source with Unknown 
but Ordered Probabilities” [2] is used in their paper. 
For that encoding f(i) = log i + log log n + O(1). If A is a 
countable alphabet. then f(i) = log i + O(loglogi). So, in 
both papers, the code length equals log i to within an 
addend o(loglog). 

There are upper bounds for the average code length: 
H + loglogn + O(1) in theirs; and H + 1 + 21og(l + H). 
where H denotes the entropy, in mine. 

I believe that the discussed coding procedure has 
many attractive features: It is simple to implement, it 
does not require a priori knowledge of source statistics, 
and it yields the average code length arbitrarily closed 
to the entropy (if applied to the blocks of letters). Those 
features are described in both papers. 
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A recent paper [l] describes a data compression scheme 
that resembles one we have investigated [7]. Although 
our paper was not published, the main results appeared 
shortly afterwards in the proceedings of a conference 
[8]. Some of our experimental results should be of in- 
terest to readers because they address som1a of the ques- 
tions raised in the paper. We also have some observa- 
tions to make about the paper. 

Like Bentley et al., we used a list of words and en- 
coded words using their index positions in the list. We 
also organized the list so that the words most likely to 
be used were at the front and used a coding scheme for 
index positions so that small index values had shorter 
encodings. We observed that maintaining a list of words 
or tokens where a maximum length restriction is im- 
posed on the list is very similar to the page replacement 
problem in virtual-memory computer systems [5]. 
Almost any page replacement algorithm is usable for 
deciding which words or tokens should be kept in the 
list and for determining the order of items in the list. 
The move-to-the front heuristic, examined in (11, is 
identical to the least-recently-used (LRU) page replace- 
ment policy. In our paper we experimentally compared 
the compression performance using the well-known 
paging policies of LRU, FIFO (first in, first out), LFU 
(least frequently used), second chance, and. climb (also 
known as the transposition heuristic) [6, 101. In the 
cases of FIFO and second chance, the policies do not 
impose a natural ordering on items in the list. We sim- 
ply ordered the list according to age-the words or 
tokens added to the list most recently are kept at the 
front. The comparative performance of the five meth- 
ods are summarized in Table I. (These results appeared 
as Table 3 in [i’].) The table shows the percent reduc- 
tion in size as a function of three factors, namely, the 
replacement policy, the maximum size of the list, and 
the kind of data being compressed. On the whole, FIFO 
does not perform as well as the other policies. There is 
little choice, however, among these five policies. In our 
opinion, the policy that is the easiest to implement 
should be used and we believe this policy is climb. 
With the climb policy, a word or token advances one 
position closer to the front of the list each ltime it is 
used. It causes fewer implementation headaches be- 
cause no more than two tokens must have their index 
positions updated in the hash table with each access. 

We have some further comments to add. First, in the 
two-pass experimental version of their compression 
scheme, Bentley et al. use Huffman coding to encode 
index positions in the list. Later in the paper, a number 
of static coding schemes that use about log(i) bits to 
encode the integer i are suggested. The use of any fixed 
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coding scheme corresponds to making an assumption 
about the distribution of accesses to different list posi- 
tions. We suggest that adaptive Huffman coding is the 
ideal method to use. Character-level adapiive Huffman 
coding is also appropriate in encoding words or tokens 
when they are encountered for the first time. 

Second, in the “Remarks” section of their paper, a 
scheme is suggested for making dynamic Huffman cod- 
ing locally adaptive. This involves incrementing the 
weight for a word each time it is used and periodically 
multiplying all weights by a factor less than 1. (This has 
the effect of making recent uses of a word count more 
than less recent uses.) This multiplication generally 
requires redetermination of the entire set of Huffman 
codes, due to the truncation error in multiplying the 
counts by a factor less than 1. The truncation error also 
results in codes that are suboptimal. We would like to 
point out that the same effect can be achieved without 
information loss if weights are incremented by ever- 
increasing amounts. For example, the increments could 
be 1, 2, 4, 8, etc. Algorithms for maintaining Huffman 

codes when weights increase by non-unit amounts 
appears in [3]. 

Finally, we question whether or not the performance 
results are good enough to justify the complexity of the 
implementation. Although the scheme beats Huffman 
coding by a reasonable margin, its compression per- 
formance is inferior to that of Ziv-Lempel compression 
[ll], a compression method that is both simpler to im- 
plement and executes much faster. Newer compression 
methods by Cleary and Witten [Z] and Cormack and 
Horspool [4. 91 achieve still better compression. Al- 
though considerably slower than the Ziv and Lempel, 
the latter scheme is competitive in speed with the 
method described here. 
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TABLE I. Compression Factors 

Test 
Maximum length of list 

Replacement policy file 16 32 64 128 256 

Least recently used T 42.8 46.1 49.6 52.4 56.3 
P 59.6 63.6 68.0 71.2 72.8 
C 45.6 53.2 57.0 59.1 60.2 
F 43.2 49.7 53.4 56.3 58.9 
B 20.6 21.2 21.6 22.0 22.4 

Least frequently used T 40.7 43.8 47.9 50.6 54.8 
P 56.2 58.3 60.1 62.9 66.8 
C 44.2 45.3 48.5 54.7 61.3 
F 40.3 43.4 46.2 50.0 56.0 
B 20.4 21.8 21.9 23.0 25.1 

First in, first out T 38.6 41.4 42.7 43.9 47.2 
P 56.0 60.0 62.9 65.1 66.9 
C 43.4 48.7 51.4 54.6 57.4 
F 40.3 44.9 46.5 47.9 53.0 
B 16.1 13.5 11.1 9.0 11.2 

T 40.5 44.1 50.0 52.7 56.6 
P 57.6 63.7 68.5 71.7 73.3 
c 44.6 53.2 57.2 59.5 59.0 
F 41.8 49.0 53.4 56.1 58.8 
B 17.3 17.2 17.9 19.8 24.5 

Climb T 42.2 46.0 48.2 50.5 55.2 
P 56.8 59.8 61.4 67.3 70.4 
C 44.4 45.4 47.0 52.4 58.6 
F 41.2 44.6 48.4 49.7 55.0 
B 20.3 21.3 21.5 21.2 21.8 

The test files were 

T formatted text (73,385 bytes), 
P Pascal source code (143,126 bytes), 
C C source code (17.161 bytes), 
F Fortran source code (40.975 bytes), and 
6 binary object code (18,432 bytes). 

Second chance 
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CORRECTIONS TO “COMBINATORIALLY 
IMPLOSIVE ALGORITHMS” 
Set covering is an important tool for modeling abduc- 
tive reasoning in artificial intelligence. It can be applied 
to a wide range of problems such as diagnostic problem 
solving [8, 11, 121, sequential error classification [l], 
and natural-language processing [3], to mention but a 
few. Extending on the ideas of set covering, a new lan- 
guage for abductive logic, ABLOG-IC, is currently being 
developed [z]. Several ideas of set covering have been 
used in the past for developing expert systems (e.g., 
[7, 9, 10, 141). Set-covering concepts have also been 
extended to fuzzy sets [IS], and work has been done 
on developing a theory of diagnosis based on logic that 
is similar to the set-covering approach [IS]. 

Recently, in reviewing the literature on this topic, 
the authors came across the predicate covering algo- 
rithms proposed by Kornfeld [S]. On careful review of 
the proposed parallel algorithm BottomUp described 
therein, several errors were encountered. This letter 
specifically addresses those errors and gives the cor- 
rected version of the algorithm. The errors are dis- 
cussed in two stages: First, the typographical errors are 
pointed out and corrected, followed by a list of logical 
errors with corresponding corrections that the authors 
recommend. The original version of the BottomUp 
algorithm as it appears in [6] is presented for reference, 
and some of the terms and concepts used in the algo- 
rithm are defined. 

A set of clauses is said to work with respect to a 
predicate clause P, if P implies the disjunction of the 

clauses in the set. A set of clauses that works is also 
minimal if no subset of this set works (with respect to 
the same predicate clause). A set that works is called a 
cover and is called a minimal couer if it is al:so minimal. 
An activity is a locus of control with some purpose. A 
sprite is a pattern-invoked procedure associated with an 
activity, which watches for assertions that match its 
pattern in a global database. It is specified ;as a (when 
[-pattern--] -body-) statement, where the body is 
executed whenever a matching pattern is asserted. An 
activity may spawn other subactivities. When an activ- 
ity is stifled, it and all its subactivities stop processing. 
The processing of an activity constitutes executing the 
bodies of those sprites that are triggered by assertions in 
that activity, and any Execute command associated 
with the activity. The Execute command takes two 
arguments: a procedure with its arguments,, and an ac- 
tivity object that uniquely identifies an activity. It exe- 
cutes the procedure in the activity associated with the 
activity object. Activities and their identifying activity 
objects are created by the NewAc t ivi t y command. 
More about the above terms and concepts (can be found 
in [4]-[6]. 

The BottomUp algorithm uses the Test:- 
Workingness procedure that takes P, a predicate, and 
set, a set of predicates, as its arguments. Test - 
Workingness checks if set works with respect to P, 

andasserts eitherWorks(set) or Notworks(set), 
which may then trigger some sprites. The !3ottomUp 
algorithm that appeared in [6] is presented below. 

1 (defineBottomUp(Psetallpreds) 
2 (foreachQE allpreds 
3 (let ((activity(NewActivity))) 
4 (if PfjLset 
5 (Execute (TestWorkingness 

P (set U (Q]}) activity) 
6 (when ((NotWorks (setU (Qj))] 
7 (Stifleactivity) 
8 (BottomUp P (set U [Q)) 

allpreds) 
9 (when [(NotWorks (setU (Q)))] 

10 (Stifleactivity)) 
11 (when [(Works (set U (Q]) )I 
12 (Assert(WorkAndMinima1 

IsetUlQll))))))) 

Referring to the algorithm above, line 4 :is redundant 
since the condition P @ set is always true. When the 
first call is made to BottomUp, set is 0 and so, trivi- 
ally, P f$ set. A subsequent call to BottomUp is made 
in the first sprite, which calls BottomUp recursively, 
with P, set U (Q],and allpreds as arguments,pro- 
vided set U ( Q ) does not work (lines 6-8). Now, if 
PE set U (~1, then set U (Qj would have worked, 
and hence the recursive call itself would n.ot have been 
made. Perhaps the original intention was to have the 
test Q @ set instead. This would eliminate fruitless 
recursive function calls such as (Bottomllp P [set U 
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