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Assume nothing is known about the probabilities of taxons except that the Grst taxon is more 
probable than the second one, the second is more probable than the third, and so on. Then to 
construct the optimal key, one can regard the ith taxon as having probability proportional to 
(i - I)‘-l/ii_ 

1. xntroduction 

Dichotomous keys are widely used in biology, mineralogy, pattern recognition, 
and other areas. Such a key is labelled c 7Tnplete binary tree. The label of a leaf is 
the name of a taxon and the label of any ther node is an attribute. One goes to 
the right son of a node if the taxon has the corresponding attribute, otherwise one 
goes to the left son. Fig. 1 shows a key of dragonties of the sub-family 
Libellulinae [l]. The key is based on analysis of the wings of a dragonfly. The first 
attribute (Y~ is equal to 0 if the last antenodal vein of the wing is complete, 1 if it is 
incomplete. The attribute cy2 is equal to 0 if the sectors of the arculus (an element 
of the wing) are divided from the very base, and equal to 1 if there is a stem at the 
top of the sectors. etc. 

There are many ways to construct a key, and we want an efficient one. If one 
wants to reduce the volume of a key to the minimum, one can use the results in 
[2]. Our goal here is to construct keys with the minimum expected time of 
identification. 

Suppose that we are given it taxons, it >O, and let Pi be the probability of 
occurrence of the ith taxon, such that P1 + P2 + l l l + P,, = 1. If the length of a path 
from the root of a determining tree 7’ up to a leaf corresponding to the ith taxon: 
is 4 (T), then the expected nu4*aber of attributes needed for identification (ex- 
pected time) is 

i= 1 
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Fig. 1. The key for dragonfly’s genera of the subfamily Libellulinae from [I]. 

In the example of Fig. 1, k(T) = 1, Z*(T) = 2, . . . , d(T) = 5. The minimum value of 
S(T, P) is equal to the entropy 

The redundancy of a key T on a vector P is 

R(T, P) = S(T, P) - H(P). 

The function R(T, P) is convex. If the probabilities PI,. . . , P,, are known, then 
finding the optimal key is equivalent to constructing the optimum decipherable 
code. The solution is the Huffman code [3], and the Shannon code [4,5] is close 
(within 1) of being optimum. 

One can scarcely hope to know the exact probabilities. They change from one 
region to another and from one season to another. Also, it is rather difficult to 
evaluate the probabilities of a taxon if one has only one or two specimens of it. 
But it is usually known which taxons occur more frequently than others. We 
consider the relation i ~j (i occurs less often than j) to be defined for all pairs of 
taxons and our set of taxons to be linearly ordered with respect to this relation. In 
the example of Fig. 1, the genus Syrnpetrum (f6j is the most numerous (in Siberia), 
and the genera Leucorrhinia (tl), Libellula ( f2), &thetrum (t,&, Pantala ( t3), 
Neurotemis (t,) follow in order (0 2 12 2 3 4 3 3 2 5). For a tree T with n leaves 
we define by R(T) the maximum of R(T, P) taken over all the vectors P 
compatible with a linear order on the set of leaves of T (taxons). We explain in 
this paper how to make a tree T with yt leaves which has the minimum possible 
value of RJT). Our method diminishes S(T, P) by a factor of 1.5 to 2 for most of 
the keys in [ 11. 

It is possible to generalize the method to the case of an arbitrary, not 
tirecessarily linear, order on the set of taxons. Such a generalization is discussed in 
[6]. The question is reduced there to finding the capacity of a communication 
channel. 
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2.~andatiaryrcsollts 

Let a linear order be defined on the set of n taxons, n > 1: 1 a2 3 l 0 . a r’t. Let 

Pm be the set of probability vectors compatible with this order, i.e., Pm is the set of 
vectorsP=(P~,...,P,)suchP,~P,~o~~gP,~OandP,+P2+~~~+P,=1.We 
denote by q* the n-dimensiona! vector, the first i coordinates of which are equal 
to l/i andthelast n-s’equaltoO,14~n.Let Q,,={ql,...,q”}. 

Lemma 1. The set P, is the convex hull of the set Q,,. 

Proof. Let P=(P1,..., Pn)EP,, q$=i (Pi-Pi+l), i=l,.. 
viously , 

Lemma 

Then 

Cpi 30, i = 1,. . . , PI, ELI Qiqi =: P and CrS1 Q = 1. 

2. Let &>O, k>O, i=l,..., n; hzAi+j, i=l, 

fIog&logh,, m=l,..., n. 
i-l i=l 

&&&. i= 1 i= 1 

, n. Let P,,+I = 0. Ob- 
0 

l *Y n-l; 

(1) 

(2) 

proof, Let ei = k/h - 1. Obviously ei > - 1. From (1) and the inequality 
ln(l+s)ss, (G>-1) we have 

s 

c &i>O, S=l,...,n. 
i=l 

We rewrite (2) in the form 

n 

c AiGi >O. 
i=l 

(3) 

(4) 

Multiplying the ith inequality (3) by the positive T umber A, - A,+l, s = 
1 V.“V n, A,,+r = 0, and summing all of them up, we obtain (4). cl 

3. ‘Ihe method 

Suppose that we are given a linearly ordered set of n taxons. To construct an 
optimum tree, we first of all supply the ith taxon with the probability Ai = 
(i- l)‘-‘/i”yn, where y,, =zFzl (i - l)‘-‘/ii, i = 1,. . . , z. It is clear that & >Ai+l, 
~~=~Ai=l and 

t$-lOgAi)/S-lOgS=lOgyn, s=l,...,n (5) 
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Now construct the Shannon code for the probability vector (A,, . . . , A,,). The code 
for the ith taxon is the first [log l/AJ binary digits of the number &I 4 
(i= 1 T***P n). T’hese codes define full binary tree TM (the nodes with only one son 
are omitted). It is known that 

l&TM) clog l/hi + 1, 6) 

where li(TM) is the number of attributes required to identify the i-th taxon in the 
tree TM 

Theorem. The maximum redundancy R,,(T) of any tree with n leaues on the linear 
ordered set of n taxons is at least log, ‘y,,. On the other hand, for the tree constructed 
aboue.. 

R,U’) s 1% in + 1. (7) 

In other words, the tree 7” is optimum to within the additive constant 1. 

Paoaf. Let T be a tree with n leaves, and let k = 2-t(T), i = 1,. . . , n. The Kraft 
inequality is valid: 

n 
c j.i$ = 1. (8) 
i .z 1 

If R,(T) c log, ‘y,,, then R( T, q’) < log, y,,, s = 1, . . . , n. The last inequality is 
equivalent to 

f sX4 IT) + log, qS) (log, ‘y,,. 
i=l 

Hence we have 

s 

- T - his2 @i s-log,s<log,y,, s= 1,. ..,n. 
i :;_ 1 

Lemma 2, (51, (8) and (9) yield 

(9) 

l= i I_Li) i hi=19 
i=l i=l 

a contradiction. Hence R,(T) a log, yPI. The first statement of the theorem is now 
proved. 

The coGvex function R(T, P) attains its minimum on a vector of Q,, (Lemma 1). 
From (6) and (9), we have R(T,, q”&log, ‘y,, + 1, s = 1,. . . , n and (7) is proved. 

cl 

It is possible to use the Fano or Huffman codes instead of the Shannon code. 
Fig. 2 presents the optimum trees for the ordered sets with not more than 9 
taxons. 



71 

(a) (b) 

(e) 

(d) 

(h) 

Fig. 2. The optimal keys. 

4. An applicatkm 

We took several sets of taxons from [l] and constructed keys for them by our 
method. For example, we could find attributes for the family Libellulinae in order 
to give it the key of Fig. 2(e). To compare the new and the former determining 
trees, one has to know the probabilities, which we did not know. We decided to 
count the number of attributes necessary to determine taxons in real samples. For 
example, B.F. Belyshev, making an inventory of Far East dragonflies, possessed a 
collection of 226 specimens of Libellulinae [7]. This collection included bll the 
specimens gathered by many researchers for a long time. There are reasons to 
consider this collection to be a representative sample. 146 of these dragonflies are 
classified as !Qmpctrum, 69 as Leucorrhinia, 5 as Libellula, 6 as Pantala. To 
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determine Sympetrum with the determiny tree in 1, Fig. 1, one has to use 5 
attributes, Leucorrhinia 2: Libellula 3, Pantala 4. The total number of attributes 
needed to determine all the dragonflies of this collection is 

This amount is reduced to 

146X1+69x2+5x4+6x4=328 

attributes with the help of our determination tree 2e. We also made calculations 
of this kind for the data from [7.8,9]. The results were good: the use of our 
method often diminished the expected number of attributes by a factor of 
between 1.5 and 2. 
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