
Discrete Applied Mathematics 12 (1985) 293-302 293 
North-Holland 

U N I V E R S A L  R E T R I E V A L  TREES 

R.E. KRICHEVSKY and B.Ya. RYABKO 
Inst. of Math. of the Siberian Div. of the Academy of Science of the USSR, Novosibirsk, 
USSR 630090 

Received 16 February 1983 
Revised 25 March 1985 

A retrieval tree identifies members of a given set. The redundancy of a tree is defined to be 
the difference between the maximum length of a path in the tree and the binary logarithm of the 
cardinality of the set. Given a family {Ao} of sets, a retrieval tree is developed whose maximum 
redundancy over the family is minimum. The tree is used to make a biological key. The proba- 
bilistic variant of the problem is discussed. 

1. Introduction 

Retr ieval  trees are widely used to ident i fy  objects .  The roo t  o f  a tree is label led 

wi th  an  a t t r i bu t e .  I f  an  o b j e c t  possesses  tha t  a t t r i bu t e ,  go  to  t he  lef t  son  o f  the  roo t ;  

i f  it does  no t ,  go  to  the  r igh t  one .  T h e  sons  a re  labe l led ,  t o o .  M o v i n g  in this w a y  

f r o m  o n e  n o d e  to  a n o t h e r ,  one  f ina l ly  reaches  a l ea f  wh ich  is l abe l led  wi th  t he  n a m e  

o f  t he  o b j e c t .  

A n  e x a m p l e  o f  a r e t r i eva l  t ree  is d e p i c t e d  in Fig .  1. Th is  is a t ree  used  to  iden t i fy  

t h e  an t s  o f  s u b g e n e r a  S . F o r m i c a ,  t a k e n  f r o m  [6]. T h e  r o o t  is l abe l led  wi th  the  a t t r i -  

b u t e  " t o  h a v e  a b l ack  h e a d " .  T h e  lef t  son  o f  t he  r o o t  is a l ea f ,  l abe l l ed  wi th  t he  

n a m e  o f  the  species " F . u r a l e n z i s " .  T h e  r ight  son  o f  t he  r o o t  is l abe l led  wi th  t he  

.4 5 10\ 2 ~ , ~  8 
Fig. 1. Ant identifying key of subgenera S. Formica from [6]. 
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(5 ,7)  (7,t~O) 

Fig. 2. A retrieval tree for the set {2, 3,5,7}.  Go to the left, if the integer sought for is less than the label; 
go to the right, if it is more. Go to the middle son, if they are equal. 

attr ibute " t o  have more  than three couple o f  hairs on the bo t tom of  the ches t" ,  and 
so on.  Such trees are called keys. 

Similar keys are utilized in medicine, mineralogy,  chemistry,  computer  program-  
ming, etc. [2]. Compu te r  p rog ramming  trees are used to find a number  f rom a set. 
Each  non-terminal  node of  such a tree is labelled with a number  and has three sons: 
right, middle and left ones. I f  the number  sought  for is less than  the label, go to 

the left son; if it equals the label, go to the middle one; otherwise go to the right 
son. There is a retrieval tree for the set B = {2, 3, 5, 7} in Fig. 2. The retrieval ends 
either at a circle-marked or  a square-marked node depending on whether or not  a 
number  to be identified belongs to B. The intervals (-0% 2), [2, 2], (2, 3), [3, 3] . . . . .  
[7,7], (7, oo) can be thought  o f  as the objects to be identified. 

Let L be a retrieval tree for a set A.  Then for  any a e A there is in L a leaf corres- 
ponding  to a. Denote by L(a) the length o f  the path f rom the root  to that leaf. 
Kraf t ' s  inequality ~a,A d-L(a) <--1, where d is the maximal  number  o f  sons o f  a 

node,  is met [2]. We are dealing with the most  of ten arising binary case in Sections 
1-4, so all logari thms are taken there to the base 2. However ,  nonbinary  generaliza- 
t ion is s t raightforward.  

The problem to find a good  retrieval tree can be set in either probabilistic or com- 
binatorial  way. The probabilistic way is as follows. Let there be a probabil i ty distri- 
but ion p - -  {p(a), a e A }, on  A.  Then the average retrieval time for  L is 

C(L,p) = ~ p(a)L(a). (1) 
a ~ A  

In fo rmat ion  theory  is used to develop trees with minimal average retrieval time 
for  a given distribution p ,  [1,2, 11,17]. The min imum of  C(L,p) over the set o f  all 
trees is close to Shannon  ent ropy H(p)=--~a~A p(a)logp(a),  or, to  be more  
accurate,  

H(p)  <_ min C(L P) <- H(p)  + 1. 
L 

The difference P(L, p) = ~(L, p ) -  H(p)  is defined to be the redundancy  o f  a tree L 
on a distribution p .  H u f f m a n ' s  a lgori thm [11] produces a tree with the minimal re- 
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dundancy. This algorithm is rather complicated. Shannon's  algorithm [17] is 
simpler. The redundancy of the tree developed by this algorithm is not more than 
1. The pathlength L(a) equals r - l o g p ( a ) 7  for that tree. Either in [14] or in 
[1,2,10,11,13] one can find methods to construct either biological or computer  
programming keys, respectively. 

The combinatorial  setting of the problem is as follows. There is no probability 
distribution now and all members of A have equal rights. The maximum retrieval 
time c(L, A) 

c(L,A) = max{L(a),  a cA}  (1') 

is to be used instead of  average retrieval time. The minimum c(L, A) over all vectors 
(L(a)), a c A  for which Kraft ' s  inequality is met, equals (to within an additive unit, 
see [2]) Hart ley 's  entropy of A, i.e. it equals log IA[. The number r(L,A) 

r(L, A ) = c(L, a) - log [A[ (2') 

is the redundancy of a tree L on the set A. The problem of constructing a tree with 
minimum redundancy has an obvious solution: L(a) equals either r log lA]7  or 

Llog [A[A, a ~ A .  
So there are methods to construct both probabilistic and combinatorial  retrieval 

trees with minimum redundancy. Those trees are intended for either a given proba- 
bility distribution or a given set A. Very often, however, there is not such a specific 
distribution or not such a single set. It is necessary to develop a tree which is good 
enough for either a family of  distributions or a family of subsets simultaneously. 
This is termed the problem of making a universal tree. We have two settings of  the 
problem again. In the probabilistic setting there is a family A = {Po} of probability 
distributions on a set A. In the combinatorial  setting there is a family A = {Ao}, 
UAo  =A, of  subsets of  A. For a retrieval tree L its redundancy on a family A is 
defined either as K'(L, A) = sup{P(L, Po), Po cA}  (probabilistic case), or as R(L, A) = 
sup {r(L, Ao), Ao e A } (combinatorial case). The (minimax) redundancy of  a family 
is minimum redundancy on it of  all retrieval trees. So let R(A)= inf R(L,A) be the 
redundancy of a family A of subsets and R(A) = i n f R (L ,A )  be the redundancy of 
a family A of  distributions. The goal is to make an opt imum universal either com- 
binatorial or probabilistic tree, i.e. either a tree Lp for which R(Lp,A)=/~(A),  or 
a tree L c for which R(Lc, A ) =R(A) .  

Both settings are of  interest. For instance, the probabili ty to meet a biological 
object is never known exactly. It depends on the year, the month,  the place, etc. A 
family {Po} of probability distributions can be considered known for a relatively 
small and well explored region. So, if an identifying key is to be developed for the 
species of  such a region, then the problem of constructing a universal tree arises in 
the probabilistic setting. But such a family cannot be known if an identifying key 
is to be developed for a big region, say, a continent or the world. The combinatorial  
setting of  the problem fits better there. A family {Ao} of subsets appears in a 
natural way: subsets Ao may be the species of  deserts, forests, etc. The key is to be 
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satisfactory for all subsets at once, that is why maximum redundancy r(L, Ao) must 
be minimum. 

Either probabilistic or combinatorial retrieval trees optimum to within an additive 

constant are developed in Sections 2 and 3. To construct a probabilistic tree, it is 
necessary to find the minimum of a convex function first. Combinatorial trees are 
constructed explicitly. An example of a retrieval biological tree is in Section 4. The 
results are generalized to computer programming trees in Section 5. 

An instance of  the problem bad already been addressed in [12]. The set A of  prob- 
ability distributions consisted of  all vectors with nonincreasing coordinates there. 

Probabilistic universal trees are discussed by T. Fischer in [7]. But the target there 
is to make for a family A a tree L for which maximum on A average retrieval time 

e(L, Pe) is minimum, whereas our target is to make a tree for which maximum on 
A redundancy is minimum. If all distributions Po of the family A have nearly equal 
entropies H(po), then ours and T. Fischer's approaches give nearly the same 
results. On the other hand, if those entropies differ significantly, then T. Fischer's 

retrieval time is significantly more than ours for distributions with small entropies. 
Thus, in that case our approach can be considered more suitable. 

We presume that for any partition of  A into two disjoint subsets B and B there 
is an attribute which equals 1 on B and 0 on B, i.e. we are free to choose tests as 
we please. What should one do if it is not so, i.e. if some tests are not available? 
Unfortunately, the problem grows then NP-hard, as it is proved in [4] even for non- 
universal trees. Still, even in that more complicated, although more real situation, 

our result may be of  interest. Having no possibility to develop exactly an optimal 
tree (NP-hardness!) a biologist or another expert may use our trees as a target to 
be approached when making keys. Our experience is that experts on ants were nearly 

always able to choose the tests in such a way that the key was very close to the 

pattern precomputed according to Sections 2 and 3. 

2. Probabilistic universal trees 

We reduce the problem of making a universal retrieval tree to the well-known 
information theory problem of finding the information rate of  a channel. Computa- 
tional methods to find such a rate are developed in [3]. 

Let A = {Po} be a family of  probability distributions on a set A. For simplicity 
we restrict ourselves to finite families A only. Infinite families are discussed in [8]. 
Let ~(A) be the set of  all probability distributions on the family A. If  ~p ~ ~(A),  
then tp(p0) means the probability of a distribution Po. The mutual information 
I(~o,A) and the information rate ¢(A) are defined as follows: 

c(A) = sup{I(~,A),  ~ ~(A)}.  
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As is proved in [8], for the family A there is a distribution v ~ q~(A) such that 

c(A) = I (v ,A) .  (3) 

Theorem 1. Let A be a f inite set and let A = {Po} be a fami ly  o f  probabifity distri- 
butions on A.  Then the max imum redundancy o f  any tree retrieval f o r  A is no less 
than the information rate c(A). On the other hand, there is a tree whose maximum 

redundancy is no more than c (A)+ 1: 

c(A) <- R (A)  <- c(A) + 1. 

To make such a tree, take the distribution v of  (3) and define on A a distribution 

by: 
re(a)= ~ v(po)Po(a), a e A .  (4) 

po~A 

Develop for the distribution rr the Shannon tree L, for which L(a) = [--log 7r(a)-]. 
For that tree the claim of the theorem is met. 

The theorem belongs to the information theory. Its proof  may be found in 

[5,9,15,16]. 

3. Combinatorial  universal trees 

z(a) = { A o , a ~ A o } ,  

u(a) = m in{ lAo l ,Ao~z (a )  }, 

~ ( A )  = ~ u(a) -~ 
a6A 

Let A be a set, and let A ={A0} be a family of  subsets of  A. Let, for a e A ,  

(5) 

(6) 

(7) 

Theorem 2. I f  A is a set, A ={A0} is a fami ly  o f  it subsets ,  UAo6 A A o = A ,  then 
the redundancy o f  the best f o r  A tree equals log .~(A) to within an additive unit: 

log ~(A)  _< R(A)  <_ log :~(A) + 1. 

To make a tree for which the claim of  the theorem is met, define on A a distri- 

bution y, 

y(a)  = (u(a)  ~ (/1)) -1 (8) 

and develop for y the Shannon tree Ly such that L~(a) = [--log y(a)-]. That tree is 
sought for. 

Proof .  (i) Lower  bound. Suppose that the lower bound is not true, i.e. there is 

a retrieval for A tree L such that 

R ( L , A )  < log ~(A) .  
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From this inequality and the definitions of R(L,A) and (2') we obtain 

m a x { L ( a ) - l o g l A 0 l , a 6 A 0 } < l o g ~ ( A ) ,  Ao~A.  

Hence, for any a ~ A  and any AoEA 

L ( a ) - l o g  [Aol < log ~(A).  

This inequality and definitions (5), (6) yield 

L(a) -  log u(a) < log ~(A).  (9) 

Next bound the difference e(L, y ) - H ( y )  where y is cJefined by (8): 

e (L ,y ) -H(y )  = ~, L(a)~,(a)-H(y) 
a e A  

= ~ y(a)(L(a) + log y(a)) 
a E A  

= ~ y(a)(L(a)-log u(a)-log ~(A) < 0. 
a E A  

The first inequality follows from (1), the second one from the definition of  
Shannon's entropy, the third one from (8), and the last inequality from (9). Thus, 

we get 
e(L, y) - H ( y )  < O, (10) 

a contradiction because ~(L, y)>>_H(y), for any distribution y. 
(ii) Upper bound. Choose A o e A  and a e A  o. We have 

L(a) -  log [Aol < log ~(A)  + 1 + log u(a) - log IAol 

< log ~ ( A ) + I .  

The first inequality follows from (7), (8), the second one from (5), (6). This chain 
of  inequalities together with (1'), (2') proves the upper bound. [] 

4. Making a biological key 

We use Theorem 2 to construct an identifying key for a subgenera of  ants. 
Biologists often conduct examination of  the fauna of various regions. Usually 

they have to collect as many as two or even three thousands of ants and identify 
them with the aid of  keys. It can take an expert entomologist up to 20 days to do 
the job. So it is worth while to try to make a more convenient key. 

A key used now to identify the ants of subgenera Serviformica is shown in Fig. 1. 
The key is taken from the book [6]. It is used throughout the territory of the USSR. 
Try to improve it via Theorem 2. 

The territory of  the USSR falls into five vast zones: tundra, forest, partially 
wooden steppe, steppe and desert. Table 1 shows which species of  subgenera Servi- 
formica inhabits which zone. We want to make one key intended for use throughout 
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Table 1. Distribution of species of  subgenera Serviformica in the zones of the USSR (+ : species is pre- 

sent, - :  species is absent). 

Part.  Number  of attributes used 
No. Species Tundra  Forest wooden Steppe Desert to identify the species 

steppe 
Key of  Fig. 3 Key of Fig. 1 

1 F. fusca - + + - - 4 7 1/7 

2 F. lemani - + - - - 3 7 1/9 
3 F. picea - + + + - 4 4 1/6 
4 F. gagatoides " + + - - - 3 6 1 

5 F. kozlovi - + - - - 4 6 1/9 
6 F. cinerea - + + + - 4 2 1/6 
7 F. subpilosa - - - + + 4 4 1/3 
8 F. cunicularia - + + + + 3 5 1/3 
9 F. rufibarbis - + + + + 3 5 1/3 

10 F. gagates - - + - - 4 6 1/7 
11 F. uralensis - + + + - 3 1 1/6 

t h e  U S S R ,  j u s t  a s  i t  is d o n e  i n  [6] .  O n e  c a n  h a r d l y  e x p e c t  t o  k n o w  s o m e t h i n g  a b o u t  

t h e  p r o b a b i l i t y  d i s t r i b u t i o n  o f  s p e c i e s  i n  s u c h  i m m e n s e  z o n e s  w i t h  e x t r e m e l y  c h a n g e -  

a b l e  c l i m a t e :  T h e  c o m b i n a t o r i a l  a p p r o a c h  l o o k s  h e r e  m o r e  a t t r a c t i v e  t h a n  t h e  p r o b -  

a b i l i s t i c  o n e .  

T h e  s e t  A is t h e  s e t  o f  a l l  s p e c i e s  h e r e ,  t h e  s e t  A1  is  t h e  se t  o f  a l l  i n h a b i t a n t s  o f  

t u n d r a  . . . . .  A 5 is  t h e  s e t  o f  a l l  i n h a b i t a n t s  o f  d e s e r t .  F i r s t  f i n d  f o r  e a c h  s p e c i e s  t h e  

c o r r e s p o n d i n g  n u m b e r  u(a) .  T h o s e  n u m b e r s  a r e  d i s p l a y e d  i n  T a b l e  1. T h e n  f i n d  

( A ) ,  y ( a )  a n d  m a k e  S h a n n o n ' s  t r e e  f o r  t h e  d i s t r i b u t i o n  7.  W e  c a n n o t  c h o o s e  a t t r i -  

b u t e s  a s  w e  p l e a s e .  T h a t  is w h y  w e  h a v e  h e r e  o b t a i n e d  n o t  a n  o p t i m u m ,  b u t  a n e a r l y  

o p t i m u m  k e y .  I t  is s h o w n  i n  F i g .  3. W e  d o  n o t  l i s t  t h e  c h a r a c t e r s  a t  e a c h  n o d e  

b e c a u s e  t h e  d e s c r i p t i o n s  o f  t e s t s  i n  [6] a r e  r a t h e r  l e n g t h y  a n d  a r e  o f t e n  a c c o m p a n i e d  

w i t h  p i c t u r e s .  

1 I' 3~ 5 6 , S 9 

Fig. 3. Ant  identifying key of  subgenera S. Formica made with the aid of  Theorem 2. 
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Tab le  2. C o m p a r i s o n  o f  the key f r o m  [6] and tha t  m a d e  accord ing  to T h e o r e m  1 on  real da ta .  The  

n u m b e r  o f  specimens really ga the red  is shown.  In the two b o t t o m  lines the retr ieval  t ime per specimen 

is shown when  ei ther  the key o f  Fig. 3 or  the key o f  Fig. 1 is used. 

No.  Species Steppe P .w.  s teppe Desert  Forest  

1 F. fusca 60 560 - 500 

2 F. lemani  - - - 50 

3 F. picea - 20 - 250 

4 F. gaga to ides  - - 20 

5 F. kozlovi - - - 20 

6 F. c inerea - 2 - 15 

7 F, subpilosa - - 450 - 

8 F, cunicular ia  400 160 14 - 

9 F, ruf ibarbis  280 90 360 - 

10 F. gagates  . . . .  

11 F. uralenis  . . . .  

Retr ieval  t ime per  Fig. 3 3.08 3.72 3.55 3.92 

specimen with key Fig. 1 5.16 6.31 4.45 5.85 

Compare  our  key (Fig. 3) with that o f  the book  [6] (Fig. 1) on real data.  A 
Siberian entomologis t  J . I .  Resnikova explored the ants o f  various zones o f  the 

USSR. The members  o f  different species o f  serviformica ants she gathered are dis- 
played in Table 2. Identifying time per specimen is shown in either the last but one 
or  the last line o f  the table depending on whether our  key or the key f rom [6] is used. 
It can be seen that  our  key is better in all zones for  those data.  

5. Generalization 

We have, up to this moment ,  dealt with binary retrieval trees. The lower bounds  
for  retrieval time were binary Shannon  or Hart ley entropies. But sometimes the 
lower bound  o f  retrieval time even for nonbinary  trees is binary entropy.  It is the 
case o f  computer  p rogramming  trees o f  Section 1. More generally, let A be a finite 

set, 2 ( A )  be a set o f  retrieval trees, a and fl are some constants.  We say that ~/'(A) 
meets the IT-condi t ion  with constants  ct and fl if for  any probabil i ty distribution p 

on A there is a t r e e  L p E ~ ( A )  such that  

Lp(a) <_ - l o g  d p(a)  + a, a e A 

and for any L ' e ~ ( A )  

c(L', p)  >_ H ( p ) -  ft. 

The constants a and fl do not depend on p ,  but can depend on A. Logar i thms are 
taken to a base d_> 2, one and the same in those inequalities and in the sequel. For  
binary retrieval trees a = 1, fl = 0. Compute r  p rogramming  trees meet that condit ion 
as well (a  = 2, fl = log log ]A] + O(1)), see [2]. Al though  any node of  the tree has 
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three sons, one o f  them is a leaf (Fig. 2). This is why one compar i son  gives not  much 

more  than one bit o f  informat ion .  There are other problems for which the condit ion 
holds, see [2]. 

Theorems 1 and 2 are generalized to the case o f  retrieval trees under  the IT- 

condit ion.  The definitions are slightly modified.  Let ~ ( p ) = i n f { e ( L ,  p),  L ~ 5~(A)}, 
p is a probabil i ty distribution on A,  

c(B) = inf{c(L,B) ,LeL/J(A)} ,  B C A ,  

?it(L, p)  = e(L, p)  - e (p) ,  

rit(L, B) = c(L, B) - c(B). 

L ~ Y~(A),A is a family o f  probabil i ty distribution on A or a family o f  subsets o f  A.  

Let 

/~it(L,A) = sup{ r i t (L ,p ) , p~A  }, /~it(A) = i n f {R i t (L ,A ) ,L~S f (A) } ,  

Rit(L,A) = sup{rit(L, B), B ~ A } ,  Rit(A ) = in f{Ri t (L ,A) ,L  ~ S ( A ) } ,  

Theorem 1'. Let A = {p} be a family o f  probability distributions on a set A,  let 
~ ( A )  be a set o f  retrieval trees and assume the IT-condition is met. Then there is 
a tree Lp for  which 

c(A ) -  (ct + fl) <_/~it(A) </~it (Lp, A)  <_ c(A) + (a +,13). 

Theorem 2'. Let A = {B} be a finite family o f  subsets o f  A ,  [-JB~A B = A ,  let L/~(A) 
be a set o f  retrieval trees and assume the IT-condition is met. Then there is a tree 
Lc for  which 

log ~ ( A )  - (c~ + fl) < Rat (A) < Rit(Lc, A)  < log ~ (A) + (c~ + fl). 

Proofs .  First define on a set A the probabil i ty distributions n and y the same way 
as it has been done in the proofs  o f  Theorems 1 and 2. As follows f rom the IT- 
condit ion,  there is a tree Lp such that for any a e A  

Lp(a) <_ - l o g  n(a) + a 

and there is a tree L c such that for  any a e A  

Lc(a) <<_ - l o g  y(a) + 

where a is the constant  in the IT-condi t ion.  The tree Lp meets the claim o f  
Theorem 1', and the tree Lc meets the claim of  Theorem 2'. [ ]  
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