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Abstract— We address the problem of on-line prediction for
time series. We show that any universal code (or a universal
data compressor) can be used as a basis for constructing
asymptotically optimal methods for this problem for a certain
class of stationary and ergodic processes.

Index Terms– density estimation, prediction of random
processes, source coding, stationary ergodic source, uni-
versal coding.

I. INTRODUCTION

Since C.Shannon published his famous paper “A mathe-
matical theory of communication” [40] the ideas and results
of Information Theory and, particularly, the theory of source
coding have begun to play an important role in mathematical
statistics, see [16], [17], [20], [24], [30], [31].

Nowadays the most known practical application of source
coding is archivers, which have shown their high efficiency as
compressors of real data. It is perhaps less known that methods
of data compression and, especially, universal codes play an
important role in hypothesis testing [35], [36] and prediction of
time series [37]. Moreover, their applications in [7], [8] created
a new rapidly growing line of investigation in clustering and
classification.

In this paper we show that any universal code can be applied
to nonparametric prediction and some related problems for a
certain class of stationary and ergodic time series. It is impor-
tant to note that the problems of prediction and estimation of
characteristics of time series has attracted attention of many
researchers, see [1], [2], [4], [18], [20], [25], [26], [28], [30],
[43].

We consider finite-alphabet and real-valued time series and
the following problems: i) prediction, ii) estimation of the
limiting probabilities for finite-alphabet time series and iii)
estimation of the density for real-valued time series. We use
a so-called on-line prediction model (or dynamic forecasting)
which was suggested in [33] and is quite popular now [2],
[18], [20], [25], [26], [28]. According to this model there
is a stationary ergodic process X1, X2, . . . with unknown
limiting probabilities P (X1 . . . Xn), n ≥ 1, for the case of
finite-alphabet time series, or an unknown density function
p(x1 . . . xn), which is assumed to exist for all n ≥ 1, for the
case of real-valued time series.

The prediction problem is as follows: at the time t we are
given a realization of the process X1, X2, . . . , Xt and have
to estimate the conditional probabilities P (xt+1|x1 . . . xt) (or
the density p(xt+1|x1 . . . xt)). The point is that if one knows
these probabilities (or the density), one has all the information
about Xt+1, that is why the problem of estimation of these
probabilities (or the density) is a fundamental problem of time
series analysis. Clearly, the more precise is the estimation,
the better is the prediction. At the next time instant t + 1
we have to estimate the probabilities P (xt+2|x1 . . . xt+1) (or
the density p(xt+2|x1 . . . xt+1)), etc. It is shown in [33] (see
also [18]) that for any predictor there exists a stationary
and ergodic source such that the error |P ∗(xt+1|x1 . . . xt) −
P (xt+1|x1 . . . xt)| (or |p∗(xt+1|x1 . . . xt)−p(xt+1|x1 . . . xt)|,
correspondingly) does not go to 0, when the length of observed
sequence t goes to infinity. (Here P ∗( ) and p∗( ) are the esti-
mations.) More precisely, for any method of prediction there
exists such a stationary ergodic process that with probability 1

lim sup
t→∞

|P ∗(xt+1|x1 . . . xt)− P (xt+1|x1 . . . xt)| > 0; (1)

lim sup
t→∞

|p∗(xt+1|x1 . . . xt)− p(xt+1|x1 . . . xt)| > 0;

see [18], [33]. In other words, there is no method whose error
goes to 0 for every stationary ergodic time series (when t
goes to infinity). On the other hand, it will be proven that
there exists a method of prediction for which the following
Cesaro average

1
t
(

t−1∑
m=0

|p(x|x1...xm) − p∗(x|x1...xm)|), (2)

t → ∞, with probability 1 goes to 0 for any stationary
ergodic source (the similar equation is true for the conditional
probabilities [33]). So, there are no consistent estimates if
the consistency is considered in the sense (1), but there are
consistent estimates in the Cesaro (average) sense of (2).

It is shown in [1] that no procedure can consistently estimate
the one-dimensional marginal density of every stationary er-
godic process for which such a density exists. In other words,
it is impossible to construct estimates for the density functions
p(x1 . . . xn), n ≥ 1. On the other hand, it will be shown later
that there are the consistent estimates in the Cesaro (average)



sense. That is why we will consider such estimates based on
estimations of the conditional probabilities and the densities
in order to estimate the (unconditional) ones as follows:

P ∗(x1...xt) =
t∏

i=1

P ∗(xi|x1...xi−1),

p∗(x1...xt) =
t∏

i=1

p∗(xi|x1...xi−1). (3)

It will be shown that in a certain sense those equations
define reasonable estimations of the unknown probabilities and
densities (See Theorems 1 and 2 below).

Let us briefly describe universal codes. Informally, a univer-
sal code compresses a sequence generated by a stationary and
ergodic source with a finite alphabet till the Shannon entropy
(per letter), which, in turn, is a lower bound for a compression
ratio. We will show that universal codes can be directly applied
to the prediction and some related problems for a certain class
of a real-valued time series. It is worth noting that everyday
methods of data compression (or archivers) like zip, arj, rar,
etc., can be used as a tool for the density estimation and
prediction, because the modern archivers are based on different
universal codes and results of coding theory (see, for ex., [14],
[21], [23], [30], [39]). Some examples of applications of real
data compressors to prediction of currency rates are given in
[37].

II. DEFINITIONS AND PRELIMINARIES

First we consider a finite alphabet sources. Let P be a
stationary and ergodic source generating letters from a finite
alphabet A. The Shannon entropy of the source is defined as
follows:

H(p) = lim
m→∞

− 1
m

∑
v∈Am

p(v) log p(v), (4)

where Am is a set of all words of the length m, log ≡ log2 .
A data compression method (or code) ϕ is defined as a

set of mappings ϕn such that ϕn : An → {0, 1}∗, n =
1, 2, . . . and for each pair of different words x, y ∈ An

ϕn(x) 6= ϕn(y). It is also required that each sequence
ϕn(u1)ϕn(u2)...ϕn(ur), r ≥ 1, of encoded words from the
set An, n ≥ 1, could be uniquely decoded into u1u2...ur.
Such codes are called uniquely decodable. For example, let
A = {a, b}, the code ψ1(a) = 0, ψ1(b) = 00, obvi-
ously, is not uniquely decodable. It is well known that if
a code ϕ is uniquely decodable then the lengths of the
codewords satisfy the following inequality (Kraft’s inequality):∑

u∈An 2−|ϕn(u)| ≤ 1, see, for ex., [15]). It will be convenient
to reformulate this property as follows:

Claim 1. Let ϕ be a uniquely decodable code over an
alphabet A. Then for any integer n there exists a measure
µϕ on An such that

− logµϕ(u) ≤ |ϕ(u)| (5)

for any u from An .

(Obviously, Claim 1 is true for the measure µϕ(u) =
2−|ϕ(u)|/Σu∈An 2−|ϕ(u)|). In what follows we call uniquely
decodable codes just ”codes”.

Now we consider universal codes. By definition, a code U
is universal if for any stationary and ergodic source P the
following equalities are valid:

lim
t→∞

|U(x1 . . . xt)|/t = H(P ) (6)

with probability 1, and

lim
t→∞

E(|U(x1 . . . xt)|)/t = H(P ), (7)

where H(P ) is the Shannon entropy of P, E(f) is a mean
value of f . It is worth noting that there exist codes for which
(6) and (7) are proven; see, for example, [33].

The well known Shannon-MacMillan-Breiman theorem
claims that for any stationary and ergodic source P

lim
t→∞

− logP (x1 . . . xt)/t = H(P ) (8)

with probability 1, see [5], [15]. This theorem plays a key role
in our consideration, because we can see from (6) and (8) that
for any universal code U

lim
t→∞

( |U(x1 . . . xt)|/t− logP (x1 . . . xt)/t ) = 0.

So, in fact the length of universal code is a reasonable
estimation of a logarithm of (unknown) probability P ( ).

The next natural question is how to estimate the precision of
the probability estimation. Mainly we will estimate the error of
estimation by the Kullback-Leibler (KL) divergence between
a distribution P and its estimation. Consider an (unknown)
source P and some estimation γ. The error is characterized
by the KL divergence

KLt(P, γ) =
∑
a∈At

P (v) log
P (v)
γ(v)

. (9)

It is well-known that for any distributions P and γ the KL
divergence is nonnegative and equals 0 if and only if P (v) =
γ(v) for all v, see, for ex., [15]. The following inequality
(Pinsker’s inequality)∑

a∈A

P (a) log
P (a)
Q(a)

≥ log e
2
||P −Q||2. (10)

connects the KL divergence with a so-called variation distance

||P −Q|| =
∑
a∈A

|P (a)−Q(a)|,

where P and Q are distributions over A, see [9]. It will
be convenient to combine all properties of the probability
estimators, which are based on universal codes.

Theorem 1. Let U be a universal code and

µU (u) = 2−|U(u)|/Σv∈A|u| 2−|U(v)|. (11)

Then, for any stationary and ergodic source P the following
equalities are valid:

i) lim
t→∞

1
t
(− logP (x1 · · ·xt)− (− logµU (x1 · · ·xt))) = 0



with probability 1,

ii) lim
t→∞

1
t

∑
u∈At

P (u) log(P (u)/µU (u)) = 0,

Now we briefly consider the problem of prediction for
time series with a finite alphabet. Let an (unknown) source
P generate a message x1 . . . xt−1xt, and the following letter
xt+1 needs to be predicted. As it was mentioned above, we
consider the prediction as a set of estimations of unknown
(conditional) probabilities. At first glance it seems natural to
estimate the precision of some prediction method γ by one of
the two following values:

log
P (xt+1|x1 · · ·xt)
γ(xt+1|x1 · · ·xt)

,
∑
a∈A

P (a|x1 · · ·xt) log
P (a|x1 · · ·xt)
γ(a|x1 · · ·xt)

,

(12)
where γ(.|x1 · · ·xt) is an estimation (a probability distribu-
tion) and x1 · · ·xt is a word generated by the unknown source.
As we mentioned above, this measure of prediction error is not
suitable for this problem. The point is that for any predictor
γ there exists a stationary and ergodic source such that both
values in (12) do not go to 0, when t→∞ (with probability
1). (The proof is given in [33]; see also [18].) On the other
hand, it is proven in [33] that there exists a predictor R for
which the following Cesaro averages go to 0 for any stationary
and ergodic source:

t−1
t−1∑
i=0

log(P (xi+1|x1 · · ·xi)/R(xi+1|x1 · · ·xi)) ,

(with probability 1) and

t−1
t−1∑
i=0

P (x1 · · ·xi+1) log
P (xi+1|x1 · · ·xi)
R(xi+1|x1 · · ·xi)

.

Hence, for any predictor γ it is natural to estimate its error by
values

t−1
t−1∑
i=0

log(P (xi+1|x1 · · ·xi)/γ(xi+1|x1 · · ·xi)) ,

(with probability 1) and

t−1
t−1∑
i=0

P (x1 · · ·xi+1) log
P (xi+1|x1 · · ·xi)
γ(xi+1|x1 · · ·xi)

,

which, in turn, are equal to the following expressions

t−1 log
P (x1 · · ·xt)
γ(x1 · · ·xt)

, t−1P (x1 · · ·xt) log
P (x1 · · ·xt)
γ(x1 · · ·xt)

,

correspondingly. So, if we take a universal code U and
apply it for prediction, the Theorem 1 will be true for the
corresponding measure µU . In other words, from mathematical
point of view the problems of probability estimation and
prediction are completely the same and can be considered
together.

III. TIME SERIES WITH A DENSITY

Here the problems of the density estimation and prediction
for a stationary ergodic time series with densities are consid-
ered.

We have seen that Shannon-MacMillan-Breiman theorem
played a key role in the case of finite-alphabet processes.
In this part we will use its generalization to the processes
with densities. This result was proved by Barron [3] and
was an extension of the L1 convergence obtained in [27],
[29], [19]. First we describe considered processes with some
properties needed for the generalized Shannon-MacMillan-
Breiman theorem to hold. In what follows, we restrict our
attention to real valued processes, but the main results may be
extended to processes taking values in a complete separable
metric space.

Let B denote the Borel subsets of R, and Bk denote the
Borel subsets of Rk, where R is the set of real numbers.
Let R∞ be the set of all infinite sequences x = x1, x2 . . .
with xi ∈ R, and let B∞ denote the usual product sigma
field on R∞, generated by the finite dimensional cylinder
sets {A1, . . . Ak, R,R, . . .}, where Ai ∈ B, i = 1, . . . , k.
Each stochastic process X1, X2, . . . , Xi ∈ R, is defined by a
probability distribution on (R∞, B∞). Suppose that the joint
distribution Pn for (X1, X2, . . . , Xn) has a probability density
function p(x1x2 . . . xn) with respect to the Lebesgue measure
λn on Rn. Let p(xn+1|x1 . . . xn) denote the conditional
density given by the ratio p(x1 . . . xn+1) /p(x1 . . . xn) for
n > 1. It is known that for stationary and ergodic processes
there exists a so- called relative entropy rate h defined by

h = lim
n→∞

−E(log p(xn+1|x1 . . . xn)), (13)

where E denotes expectation with respect to P ; see [3]. The
following generalization of the Shannon-MacMillan-Breiman
theorem follows from [3]:

Claim 2. If {Xn} is a P−stationary ergodic process
with density p(x1 . . . xn) = dPn/dλn and hn < ∞ for
some n ≥ m, the sequence of relative entropy densities
−(1/n) log p(x1 . . . xn) convergence almost surely to the rel-
ative entropy rate, i.e.,

lim
n→∞

(−1/n) log p(x1 . . . xn) = h (14)

with probability 1 (according to P ).
Now we return to the estimation problems. Let {Πn}, n ≥

1, be an increasing sequence of finite partitions of R that
asymptotically generates the Borel sigma-field B and let x[k]

denote the element of Πk that contains the point x. (Informally,
x[k] is obtained by quantizing x to k bits of precision.) For
integers s and n we define the following approximation of the
density

ps(x1 . . . xn) = P (x[s]
1 . . . x[s]

n )/λn(x[s]
1 . . . x[s]

n ). (15)

We also consider

hs = lim
n→∞

−E(log ps(xn+1|x1 . . . xn)). (16)



Applying the claim 2 to the density ps(x1 . . . xt), we obtain
that a.s.

lim
t→∞

−1
t

log ps(x1 . . . xt) = hs. (17)

Let U be a universal code, which is defined for any finite
alphabet. (In fact, all known universal codes possess this
property , see, for example, [21], [23], [33].) In order to
describe our density estimate we first define a probability
distribution {ω = ω1, ω2, ...} on integers {1, 2, ...} by

ω1 = 1− 1/ log 3, ... , ωi = 1/ log(i+1)− 1/ log(i+2), ... .
(18)

(In what follows we will use this distribution, but results
described below are obviously true for any distribution with
nonzero probabilities.) Now we can define the density estimate
rU as follows:

rU (x1 . . . xt) =
∞∑

i=0

ωi µU (x[i]
1 . . . x

[i]
t )/λt(x

[i]
1 . . . x

[i]
t ) , (19)

where the measure µU is defined by (11). (It is assumed here
that the code U(x[i]

1 . . . x
[i]
t ) is defined for the alphabet, which

contains |Πi| letters. The only properties of universal codes
which are used later are the limit equations (6) and (7). That
is why, in principal, it is possible to use different universal
codes for different i, say, one for even i and another for odd
i, etc. The only requirement is that the equations (6) and (7)
should be valid for such a mixed code.)

It turns out that, in a certain sense, rU (x1 . . . xt) estimates
the unknown density p(x1 . . . xt).

Theorem 2 . Let Xt be a stationary ergodic time series with
densities p(x1 . . . xt) = dPt/dλt, where λt is the Lebesgue
measure on Rt and let

lim
s→∞

hs = h <∞, (20)

where h and hs are relative entropy rates, see (13), (16). Then

lim
t→∞

1
t

log
p(x1...xt)
rU (x1...xt)

= 0 (21)

with probability 1 and

lim
t→∞

1
t
E log

p(x1 . . . xt)
rU (x1 . . . xt)

= 0 . (22)

Proof: First we prove that with probability 1 there exists
the following limit limt→∞

1
t log(p(x1 . . . xt)/rU (x1 . . . xt))

and this limit is finite and nonnegative. For this purpose we
will use some results of the martingale theory, see e.g. [13],[42,
Chapter 7]. Let An = {x1, . . . , xn : p(x1, . . . , xn) 6= 0}.
Define

zn(x1 . . . xn) = rU (x1 . . . xn)/p(x1 . . . xn) (23)

for (x1, . . . , xn) ∈ An and zn = 0 elsewhere.
Similarly to [42, pp. 524-525] we obtain

E(zn|x1, . . . , xn−1) = E

(
rU (x1 . . . xn)
p(x1 . . . xn)

∣∣∣∣x1, . . . , xn−1

)
=
rU (x1 . . . xn−1)
p(x1 . . . xn−1)

E

(
rU (xn|x1 . . . xn−1)
p(xn|x1 . . . xn−1)

)

= zn−1

∫
A

rU (xn|x1 . . . xn−1)dP (xn|x1 . . . xn−1)
dP (xn|x1 . . . xn−1)/dλn(xn|x1 . . . xn−1)

= zn−1

∫
A

rU (xn|x1 . . . xn−1)dλn(xn|x1 . . . xn−1) ≤ zn−1.

Thus, the stochastic sequence (zn, B
n) is, by definition, a non-

negative supermartingale with respect to P , with E(zn) ≤ 1,
see [42, Chapter 7]. Hence, Doob’s submartingale convergence
theorem implies that the limit zn exists and is finite with
P−probability 1 (see [42, Theorem 7.4.1]). Since all terms
are nonnegative so is the limit. Using the definition (23) with
P -probability 1 we have

lim
n→∞

p(x1 . . . xn)/rU (x1 . . . xn) > 0,

lim
n→∞

log(p(x1 . . . xn)/rU (x1 . . . xn)) > −∞

and

lim
n→∞

n−1 log(p(x1 . . . xn)/rU (x1 . . . xn)) ≥ 0. (24)

Now we note that for any integer s the fol-
lowing obvious equality is true: rU (x1 . . . xt) =
ωsµU (x[s]

1 . . . x
[s]
t )/λt(x

[s]
1 . . . x

[s]
t ) (1 + δ(x1 . . . xt)) for

some δ(x1 . . . xt) > 0. From this equality, (11) and (19) we
immediately obtain that a.s.

lim
t→∞

1
t

log
p(x1 . . . xt)
rU (x1 . . . xt)

≤ lim
t→∞

− logωs

t

+ lim
t→∞

1
t

log
p(x1 . . . xt)

µU (x[s]
1 . . . x

[s]
t )/λt(x

[s]
1 . . . x

[s]
t )

≤ lim
t→∞

1
t

log
p(x1 . . . xt)

2−|U(x
[s]
1 ...x

[s]
t )|/λt(x

[s]
1 . . . x

[s]
t )

. (25)

The right part can be presented as follows:

lim
t→∞

1
t

log
p(x1 . . . xt)

2−|U(x
[s]
1 ...x

[s]
t )|/λt(x

[s]
1 . . . x

[s]
t )

= lim
t→∞

1
t

log
ps(x1 . . . xt) λt(x

[s]
1 . . . x

[s]
t )

2−|U(x
[s]
1 ...x

[s]
t )|

(26)

+ lim
t→∞

1
t

log
p(x1 . . . xt)
ps(x1 . . . xt)

.

Having taken into account that U is a universal code, (15) and
the theorem 1, we can see that the first term is equal to zero.
From (14) and (17) we can see that a.s. the second term is
equal to hs − h. This equality is valid for any integer s and,
according to (20), the second term equals zero, too, and we
obtain that

lim
t→∞

1
t

log
p(x1 . . . xt)
rU (x1 . . . xt)

≤ 0.

Having taken into account (24), we can see that the first
statement is proven.

From (25) and (26) we can can see that

E log
p(x1 . . . xt)
rU (x1 . . . xt)

≤ E log
ps(x1, . . . , xt) λt(x

[s]
1 . . . x

[s]
t )

2−|U(x
[s]
1 ...x

[s]
t )|



+E log
p(x1 . . . xt)
ps(x1, . . . , xt)

. (27)

The first term is the average redundancy of the universal code
for a finite- alphabet source, hence, according to the theorem
1, it tends to 0. The second term tends to hs − h for any s
and from (20) we can see that it is equals to zero. The second
statement is proven.

We have seen that the requirement (20) plays an important
role in the proof. The natural question is whether there exist
processes for which (20) is valid. The answer is positive. For
example, let a process possessed values in the interval [−1, 1],
λn be Lebesgue measure on Rn and the considered process
is Markovian with conditional density

p(x|y) =
{

1/2 + α sign(y) sin(πx), if x < 0 ;
1/2 + α sign(y) sin(πx), if x ≥ 0 ,

where α ∈ (0, 1/2) is a parameter and

sign(y) =
{
−1, if y < 0,
1, if y ≥ 0 .

In words, the density depends on a sign of the previous value.
It is easy to see that (20) is true for any α ∈ (0, 1/2).

So we have seen that there exist time series for which
the equality (20) is valid. The next question is whether there
exist general conditions which guarantee that (20) is true. The
equation in (20) in a certain sense looks like a definition of the
Riemann integral. We will suggest one simple condition which
guarantees validity of (20). This conditions directly follows
from well-known properties of the Riemann integral whose
definition can be found, for example, in [6].

Claim 3. Let there be a time series generating elements
from a finite interval I ⊂ R. If the following properties
are valid: i) the memory of the time series is finite (i.e. there
exists such m that p(x|x1....xt) = p(x|x1....xm) if t ≥ m),
ii) −p(x|x1....xm) log p(x|x1....xm) is upper bounded by a
constant C and is piecewise continuous function, then (20) is
valid.

Comment. The parameters I , m and C may be unknown.
Proof: From the definition (16) and the property

i) we obtain that hs = −E(log ps(x|x1 . . . xm)).
The value −E(log ps(x|x1 . . . xm)) equals
−

∫
ps(x|x1 . . . xm) log ps(x|x1 . . . xm)dλm+1. From

the definition (16) we can see that the function
log ps(x|x1 . . . xm)) has the same values for all x ∈ ∆, where
∆ is an element of the partition Πm+1

s . Hence, taking into
account the definition of ps() (15) we obtain the following
inequalities:∑
∆∈Πm+1

s

min
(x,x1,...,xm)∈∆

p(x|x1 . . . xm) log p(x|x1 . . . xm)λ(∆)

≤
∫
ps(x|x1 . . . xm) log ps(x|x1 . . . xm)dλm+1 ≤∑

∆∈Πm+1
s

max
(x,x1,...,xm)∈∆

p(x|x1 . . . xm) log p(x|x1 . . . xm)λ(∆),

where λ(∆) is the volume of ∆. Having taken into account the
definition of Riemann integral [6, Addition, $4], the properties
ii) and the fact that the densities are defined on the finite
interval I , we obtain that

lim
s→∞

∫
ps(x|x1 . . . xm) log ps(x|x1 . . . xm)dλm+1 =∫
p(x|x1 . . . xm) log p(x|x1 . . . xm)dλm+1.

The following theorem concerns the problem of es-
timating the conditional probabilities rU (x|x1...xm) =
rU (x1...xmx)/rU (x1...xm) which, in turn, is connected with
the prediction problem. We will see that the conditional density
rU (x|x1...xm) is a reasonable estimation of p(x|x1...xm).

Theorem 3. Let f be an integrable function, whose
absolute value is bounded by a certain constant b and all
conditions of the theorem 2 are true. Then the following
equality is valid:

i) lim
t→∞

1
t
E(

t−1∑
m=0

(
∫
f(x) p(x|x1...xm)dλm−

∫
f(x) rU (x|x1...xm)dλm)2) = 0, (28)

ii) lim
t→∞

1
t
E(

t−1∑
m=0

|
∫
f(x) p(x|x1...xm) dλm−

∫
f(x) rU (x|x1...xm) dλm|) = 0.

Proof: The last inequality of the following chain follows
from the Pinsker’s one, whereas all others are obvious.

(
∫
f(x) p(x|x1...xm) dλm −

∫
f(x) rU (x|x1...xm) dλm)2

= (
∫
f(x) (p(x|x1...xm)− rU (x|x1...xm)) dλm)2

≤ b2(
∫

(p(x|x1...xm)− rU (x|x1...xm)) dλm)2

≤ b2(
∫
|p(x|x1...xm)− rU (x|x1...xm)|dλm)2

≤ const

∫
p(x|x1...xm) log

p(x|x1...xm)
rU (x|x1...xm)

dλm.

From these inequalities we obtain:

E(
t−1∑
m=0

(
∫
f(x) p(x|x1...xm) dλm−

∫
f(x) rU (x|x1...xm) dλm)2) ≤ (29)

t−1∑
m=0

constE(
∫

p(x|x1...xm) log
p(x|x1...xm)
rU (x|x1...xm)

dλm).



The last term can be presented as follows:
t−1∑
m=0

E(
∫
p(x|x1...xm) log

p(x|x1...xm)
rU (x|x1...xm)

dλm) =

t−1∑
m=0

∫
p(x1...xm)

∫
p(x|x1...xm) log

p(x|x1...xm)
rU (x|x1...xm)

dλ1dλm

=
∫

p(x1...xt) log(p(x1...xt)/rU (x1...xt))dλt.

From this equality, (29) and Corollary 1 we obtain (28). ii)
can be derived from (29) and the Iensen inequality for the
function x2.

Comment. In fact, the statements i) and ii) are equivalent.
Our proof is similar to the method from [38], see Lemma 2
there.
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