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Abstract—The problem of constructing effective statistical
tests for random sequences of binary digits is considered. The
effectiveness of such statistical tests is mainly estimated on the
basis of experiments with various random number generators.
We consider this problem in the framework of mathematical
statistics and find an asymptotic estimate for the p-value of the
optimal test in the case when the alternative hypothesis is an
unknown stationary ergodic source.

I. INTRODUCTION

Random numbers find many applications in various fields of
information technology including information protection sys-
tems, numerical methods, computer games and many others.
In practice, random numbers are generated by so-called ran-
dom number generators (RNGs) and pseudo-random number
generators. The quality of the generators is checked using
methods of statistical hypothesis testing. For example, NIST
USA recommends 15 statistical tests for use in cryptographic
applications [1].

Here we consider the problem of finding optimal tests in the
case when the RNG is modeled by stationary ergodic sources.
We found the following asymptotic solution to this problem:
we first described the asymptotic behaviour of the p-value of
the optimal test for the case where the probability distribution
of the RNG is a priori known, and then described a family
of statistical tests that have the same asymptotic estimates
of the p-value for any distribution (which is not known in
advance). More precisely, we showed that in both cases, with
probability 1, limn→∞− 1

n log πτ (x1x2...xn) = 1 − h(ν),
where x1x2...xn is the sample, τ is the test, πτ (x1x2...xn) is
the p-value, and h(ν) is the Shannon entropy of the (unknown)
RNG distribution ν. It turns out that asymptotically optimal
tests with the required properties are known [2], [3], and are
deeply connected with so-called universal codes. Note that
nowadays there are many universal codes which are based
on different ideas and approaches, among which we note the
PPM universal code [4], the arithmetic code [5], the Lempel-
Ziv (LZ) codes [6], the Burrows-Wheeler transform [7] which
is used along with the book-stack (or MTF) code [8]–[10],
the class of grammar-based codes [11], [12] and some others
[13], [14]. All these codes are universal. This means that,
asymptotically, the ratio of compressed file length to source
file length goes to the smallest possible value, i.e. the Shannon
entropy (h(ν)) per letter.

The main idea of randomness tests based on universal codes
is rather natural: try to “compress” a test sequence by a

universal code: if the sequence is significantly compressed,
then it is not random, see [2], [3] and a brief description in
the next part.

The rest of the paper is organised as follows. The next
section contains the necessary definitions and some basic
facts. Sections III, IV are devoted to investigation of the
Neyman-Pearson test and tests based on universal codes,
correspondingly. The proofs are given in the appendix.

II. DEFINITIONS

1) The main notations: We consider RNG which generates
a sequence of letters x = x1x2...xn, n ≥ 1, from the alphabet
{0, 1}n. There are two following statistical hypothesis: the
null hypothesis H0 = {x obeys uniform distribution (µU )
on {0, 1}n } and the alternative hypothesis H1 = H̄0, that is,
H1 is negation of H0. Let T be a test. Then, by definition, a
significance level α equals probability of the Type I error.
(Recall, that Type I error occurs if H0 is true and H0 is
rejected. Type II error occurs if H1 is true, but H0 is accepted.)
Denote a critical region of the test T for the significance level
α by CT (α) and let C̄T (α) = {0, 1}n \ CT (α). (Recall, that
for a certain x = x1x2...xn the hypothesis H0 is rejected if
and only if x ∈ CT (α).)

Let us assume that H1 is true and the investigated sequence
x = x1x2...xn is generated by (unknown) source ν. By defi-
nition, the test T is consistent (for ν), if for any significance
level α ∈ (0, 1) the probability of Type II error goes to 0, that
is

lim
n→∞

ν(C̄T (α)) = 0 . (1)

Let us give a definition of a so-called p-value, which plays
an important role in the randomness testing. Let there be a
statistic τ (that is, a function on {0, 1}n) and x be a word
from {0, 1}n. A p-value (πτ (x)) of τ and x is defined by the
equation

πτ (x) = µU{y : τ(y) ≥ τ(x)} = |{y : τ(y) ≥ τ(x)}|/2n .
(2)

(Here and below |X| is a number of elements X , if X is a
set, and the length of X , if X is a word.)

Informally, πτ (x) is the probability to meet a random point
y which is ”worse” than the observed when considering the
null hypothesis.



2) The consistent tests for stationary ergodic sources and
universal codes: First let us give a short informal description
of the universal codes. For any integer m a lossless code φ is
defined as such a map from the set of m-letter words to the
set of all binary words that for any sequence of encoded m-
letter words φ(v1)φ(v2)... the initial sequence v1v2... can be
found without mistakes; the formall definition can be found,
for example, in [15].

We will consider universal codes which have the following
property: for any stationary ergodic ν defined on the set of all
infinite binary words x = x1x2..., with probability one

lim
n→∞

1

n
|φ(x1x2...xn)| = h(ν) , (3)

where h(ν) is the Shannon entropy of ν (see for definition
[15]). Such codes exist, see, for example, [2], [3]. Note, that
a goal of codes is to ” compress ” sequences, i.e. make a
length of the codeword φ(x1x2...xn) as small as possible. The
property (3) shows that the universal codes are asymptotically
optimal, because the Shannon entropy is a lower bound of the
length of the compressed sequence per letter, see [15].

Let us back to considered problem of hypothesis testing.
Suppose, it is known that a sample sequence x = x1x2...
was generated by stationary ergodic source and, as before,
we consider the same H0 against the same H1. Let φ be a
universal code. The following test is a particular case of a
goodnes-of-fit test suggested in [2], [3]:

If n − |φ(x1...xn)| ≥ − log2 α then H0 is rejected,
otherwise accepted. Here, as before, α is the significance
level, |φ(x1...xn)| is the length of encoded (”compressed”)
sequence.

We denote this test by Tφ and its statistic by τφ, i.e.

τφ(x1...xn) = n− |φ(x1...xn)| . (4)

It turns out that this test is consistent for any stationary
ergodic source. More precisely, the following theorem is
proven in [2], [3]:

For each stationary ergodic ν, α ∈ (0, 1) and a universal
code φ, the Type I error of the described test is not larger
than α and the Type II error goes to 0, when n→∞.

III. ASYMPTOTIC BEHAVIOUR OF A P-VALUE OF THE
NEYMAN-PEARSON TEST.

Suppose, that H1 is true and sequences x ∈ {0, 1}n are
obey a certain distribution ν. It is well-known in mathematical
statistics that the optimal test (NP -test or likelihood-ratio test)
is described by Neyman-Pearson lemma and the critical region
of this test is defined as follows:

CNP (α) = {x : µU (x)/ν(x) ≤ λα} ,

where α ∈ (0, 1) is the significance level and the constant λα
is chosen in such a way that µU (CNP (α)) = α, see [16]. (We
did not take into account that the set {0, 1}n is finite. Strictly
speaking, in such a case a randomized test should be used,
but in what follows we will consider asymptotic behaviour of

the tests for large n and this effect will be negligible). The p-
value for the NP -test can be derived from the definition (2), if
we put τ(x) = ν(x) and take into account that by definition,
µU (x) = 2−n for any x ∈ {0, 1}n. So,

πNP (x) = µU{y : ν(y) ≥ ν(x)} = |{y : ν(y) ≥ ν(x)}|/2n .
(5)

The following theorem describes an asymptotic behaviour of
p-values for stationary ergodic sources for NP test.

Theorem 1: If ν is a stationary ergodic measure, then, with
probability 1,

lim
n→∞

− 1

n
log πNP (x) = 1− h(ν) , (6)

where h(ν) is the Shannon entropy of ν, see for definition
[15].
The NP -test is optimal in the sense that its probability of a
Type II error is minimal, but when testing RNG the alternative
distribution is unknown, and, hence, some other tests should
be used. It turns out that the above described test Tφ has the
same asymptotic behaviour as NP -test.

IV. ASYMPTOTICALLY OPTIMAL TESTS FOR
RANDOMNESS.

The following theorem describes an asymptotic behaviour
of p-values for stationary ergodic sources for tests which are
based on universal codes.

Theorem 2: Let φ be a universal code and the test Tφ with
statistic τφ (4) is applied. Then for any stationary ergodic
measure ν, with probability 1,

lim
n→∞

− 1

n
log πτφ(x) = 1− h(ν) , (7)

where πτφ is the p-value.
Note that this theorem gives some idea of the relation between
the Shannon entropy of the (unknown) process ν and the
required sample size. Indeed, suppose that a NP test is used
and the desired significance level is α. Then, we can see that
(asymptotically) α should be less than πNP (x) and from (6)
we obtain n > − logα/(1 − h(ν)) (for the most powerful
test). It is known that the Shannon entropy is 1 if and only
if ν is the uniform measure µu. Therefore, in a certain sense,
the difference 1 − h(ν) estimates the distance between the
distributions, and the last inequality shows that the required
sample size goes to infinity if ν approaches the uniform
distribution.

The next simple example illustrates the theorems. Let
there be a test κ and a generator (a measure ν) that
generates sequences of independent binary digits with,
say, ν(0) = 0.501, ν(1) = 0.499. Suppose that
limn→∞− 1

n log πκ(x) = c , where c is a positive constant.
Let us consider the following “decimation test” κ1/2: an input
sequence x1x2....xn is transformed into x1x3x5...x2bn/2c−1
and then κ is applied to this transformed sequence. Obvi-
ously, for this test limn→∞− 1

n/2 log πκ1/2(x) = c , and,
hence, limn→∞− 1

n log πκ1/2(x) = c/2 . Thus, the value
− 1
n log πκ(x1...xn) seems to be a reasonable estimate of the

power of the test for large n.



V. APPENDIX

Proof of Theorem 1. The well-known Shannon-McMillan-
Breiman (SMB) theorem states that for the stationary ergodic
source ν and any ε > 0, δ > 0 there exists such n′(ε, δ) that

ν{x ∈ {0, 1}n : h(ν)− ε < − 1

n
log ν(x) <

h(ν) + ε } > 1− δ for n > n′(ε, δ) , (8)

see [15]. From this we obtain

ν{x ∈ {0, 1}n : 2−n(h(ν)−ε) > ν(x) >

2−n(h(ν)+ε)} > 1− δ (9)

for n > n′(ε, δ). It will be convenient to define

Φε,n = {x ∈ {0, 1}n : h(ν)− ε <

− 1

n
log ν(x) < h(ν) + ε } (10)

From this definition and (9 ) we obtain

(1− δ) 2n(h(ν)−ε) ≤ |Φε,n| ≤ 2n(h(ν)+ε) . (11)

For any x ∈ Φε,n define

Λx = {y : ν(y) ≥ ν(x) }
⋂

Φε,n . (12)

Note that, by definition, |Λx| ≤ |Φε,n| and from (11) we obtain

|Λx| ≤ 2n(h(ν)+ε) . (13)

For any ρ ∈ (0, 1) we define Ψρ ⊂ Φε,n such that

ν(Ψρ) = ρ & ∀u ∈ Ψρ, ∀v ∈ (Φε,n \Ψρ) : ν(u) ≥ ν(v) .
(14)

(That is, Ψρ contains the most probable words whose total
probability equals ρ. If there are several such sets we can take
any of them. ) Let us consider any x ∈ (Φε,n \ Ψρ). Taking
into account the definition (14) and (11) we can see that for
this x

|Λx| ≥ ρ|Φε,n| ≥ ρ(1− δ)2n(h(ν)−ε) . (15)

So, from this inequality and (13) we obtain

ρ(1− δ)2n(h(ν)−ε) ≤ |Λx| ≤ 2n(h(ν)+ε) . (16)

From equation (9), (10) and (14) we can see that ν(Φε,n \
Ψρ) ≥ (1 − δ)(1 − ρ). Taking into account (16) and this
inequality, we can see that

ν{x : h(ν)− ε+ log(ρ(1− δ))/n

≤ log |Λx|/n ≤ h(ν) + ε} ≥ (1− δ)(1− ρ). (17)

From the definition (5) of πNP (x) and the definition (12) of
Λx, we can see that πNP (x) = |Λx|/2n. Taking into account
this equation and (17) we obtain the following:

ν{x : 1− (h(ν)− ε+ log(ρ(1− δ))/n) ≥

− log πNP (x)/n ≥ 1− (h(ν) + ε)} ≥ (1− δ)(1− ρ). (18)

Clearly, there exists such n∗(ρ) that for n > n∗(ρ)
− log(ρ(1 − δ))/n < ε. Taking into account (8) we can see
that

ν{x : 1− (h(ν)− 2ε) ≥

− log πNP (x)/n ≥ 1− (h(ν) + ε)} ≥ (1− δ)(1− ρ) (19)

for n > max(n′(ε, δ), n∗(ρ)). This inequality is valid for any
ρ ∈ (0, 1) and, in particular, for ρ = δ. So, from (19) we
obtain

ν{x : 1− (h(ν)− 2ε) ≥

− log πNP (x)/n ≥ 1− (h(ν) + ε)} ≥ (1− 2δ).

for n > max(n′(ε, δ), n∗(δ)).
Having taken into account that this inequality is valid for

all positive ε and δ, we obtain the statement of the theorem.
Proof of Theorem 2 is similar to the previous one. First, for

any ε > 0, δ > 0 we define

Φ̂ε,n = {x : h(ν)− ε < |φ(x1...xn)|/n < h(ν) + ε } . (20)

Note that from (3 ) we can see that there exists such n′′(ε, δ)
that, for n > n′′(ε, δ),

ν(Φ̂ε,n) > 1− δ . (21)

We will use the set Φε,n (see (10) ). Having taken into account
the SMB theorem (8) and (21), we can see that

ν(Φ̂ε,n ∩ Φε,n) > 1− 2δ , (22)

if n > max(n′(ε, δ), n′′(ε, δ)).
From this moment, the proof begins to repeat the proof of

the first theorem, if we use the set (Φ̂ε,n ∩ Φε,n) instead of
Φε,n. Namely, define

Λ̂x = {y : |φ(y)| ≤ |φ(x)| } ∩ (Φ̂ε,n ∩ Φε,n) (23)

and Ψ̂ρ is such a subset of (Φ̂ε,n ∩ Φε,n) that

ν(Ψ̂ρ) = ρ & ∀u ∈ Ψρ ,∀v ∈ ((Φ̂ε,n ∩ Φε,n) \Ψρ) :

|φ(u)| ≤ |φ(v)| . (24)

Let us consider any x ∈ ((Φ̂ε,n ∩ Φε,n) \ Ψ̂ρ). Taking into
account the definition (23) and (22), we obtain

ρ(1− 2δ)2n(h(ν)−ε) ≤ |Λ̂x| ≤ 2n(h(ν)+ε) . (25)

From equations (22) and (24) we can see that ν((Φ̂ε,n∩Φε,n)\
Ψ̂ρ) ≥ (1 − 2δ)(1 − ρ). Taking into account (25) and this
inequality, we can see that

ν{x : h(ν)− ε+ log(ρ(1− 2δ))/n

≤ log |Λ̂x|/n ≤ h(ν) + ε} ≥ (1− 2δ)(1− ρ). (26)

From the definition of p-value (2) and the definition (23),
we can see that πτφ(x) = |Λ̂x|/2n. Taking into account this
equation and (26) we obtain the following:

ν{x : 1− (h(ν)− ε+ log(ρ(1− δ))/n) ≥

− log πτφ(x)/n ≥ 1− (h(ν) + ε)} ≥ (1− 2δ)(1− ρ). (27)



Clearly, there exists such n∗∗(ρ) that for n > n∗∗(ρ)
− log(ρ(1 − 2δ))/n < ε. Taking it account we can see from
(27) that

ν{x : 1− (h(ν)− 2ε) ≥

− log πτφ(x)/n ≥ 1− (h(ν) + ε)} ≥ (1− 2δ)(1− δ) (28)

for n > max(n′(ε, δ), n′′(ε, δ), n∗∗(ρ)). So, from (28) we
obtain

ν{x : 1− (h(ν)− 2ε) ≥

− log πτφ(x)/n ≥ 1− (h(ν) + ε)} ≥ (1− 3δ).

for n > max(n′(ε, δ), n′′(ε, δ), n∗∗(δ)).
Having taken into account that this inequality is valid for

all positive ε and δ, we obtain the statement of the theorem.
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