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Abstract— We address the problem of nonparametric estima-
tion of characteristics for stationary and ergodic time series.
We consider finite-alphabet time series and the real-valued
ones and the following problems: estimation of the (limiting)
probability P (u0 . . . us) for every s and each sequence u0 · · · us

of letters from the process alphabet (or estimation of the
density p(x0, . . . , xs) for real-valued time series), so-called on-line
prediction, where the conditional probability P (xt+1/x1x2 . . . xt)
(or the conditional density p(xt+1/x1x2 . . . xt)) should be esti-
mated (in the case where x1x2 · · · xt is known), regression and
classification (or so-called problems with side information). We
show that any universal code (or a universal data compressor)
can be used as a basis for constructing asymptotically optimal
methods for the above problems.

I. INTRODUCTION

J. Rissanen [23], [24], [25] has discovered some deep
connections between universal coding (or universal data com-
pression) and mathematical statistics. In this paper we apply
this approach to some statistical problems concerned with time
series. We address the problem of nonparametric estimation of
characteristics of stationary and ergodic time series.

We consider a stationary and ergodic source, which gener-
ates sequences x1x2 · · · of elements (letters) from some set
(alphabet) A, which is either finite or real-valued. Of course,
if someone knows the probability distribution (or the density)
he has all information about the source and can solve all
problems in the best way. Hence, generally speaking, precise
estimations of the probability distribution and the density
can be used for prediction, regression estimation, etc. In
this paper we follow the scheme: we consider the problems
of estimation of the probability distribution or the density
estimation. Then we show how the solution can be applied to
other problems, paying the main attention to the problem of
prediction, because of its practical applications and importance
for probability theory, information theory, statistics and other
theoretical sciences, see [1], [12], [13], [15], [19], [20], [25],
[36]. We show that universal codes (or data compressors) can
be applied directly to the problems of estimation, prediction,
regression and classification. It is not surprising, because for
any stationary and ergodic source p generating letters from a
finite alphabet and any universal code U the following equality

is valid with probability 1:

lim
t→∞

1
t
(− log p(x1 · · ·xt)− |U(x1 · · ·xt)|) = 0,

where x1 · · ·xt is generated by p. (Here and below log = log2,
|v| is the length of v, if v is a word and the number of elements
of v if v is a set.) So, in fact, the length of the universal code
(|U(x1 · · ·xt)|) can be used as an estimate of the logarithm
of the unknown probability and, obviously, 2−|U(x1···xt)| can
be considered as the estimation of p(x1 · · ·xt). In fact, a
universal code can be viewed as a non-parametrical estimation
of (limiting) probabilities for stationary and ergodic sources.
This was recognized shortly after the discovery of universal
codes (for the set of stationary and ergodic processes with
finite alphabets [26]) and universal codes were applied for
solving prediction problem [27].

We would like to emphasize that, on the one hand, all
results are obtained in the framework of classical probability
theory and mathematical statistics and, on the other hand,
everyday methods of data compression (or archivers) can be
used as a tool for density estimation, prediction and other
problems, because they are practical realizations of universal
codes. It is worth noting that the modern data compressors
(like zip, arj, rar, etc.) are based on deep theoretical results
of the theory of source coding (see, for ex., [10], [16], [18],
[25], [34]) and have been demonstrated high efficiency in
practice as compressors of texts, DNA sequences and many
other types of real data. In fact, archivers can find many kinds
of latent regularities, that is why they look like a promising
tool for prediction and other problems. Moreover, recently
universal codes and archivers were efficiently applied to some
problems which are very far from data compression: first, their
applications in [5], [6] created a new and rapidly growing line
of investigation in clustering and classification and, second,
universal codes were used as a basis for non-parametric tests
for the main statistical hypotheses concerned with stationary
and ergodic time series [30], [31].

Proofs of the theorems can be found in the extended version
of the paper in arxiv.org, cs.IT/0701036.

II. PREDICTORS AND UNIVERSAL DATA COMPRESSORS

We consider a source with unknown statistics which gener-
ates sequences x1x2 · · · of letters from some set (or alphabet)
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A. It will be convenient at first to describe briefly the predic-
tion problem. This problem can be traced back to Laplace. He
suggested the following predictor:

L0(a|x1 · · ·xt) = (νx1···xt(a) + 1)/(t + |A|), (1)

where νx1···xt(a) denote the count of letter a occurring in the
word x1 . . . xt−1xt. For example, if A = {0, 1}, x1...x5 =
01010, then the Laplace prediction is as follows: L0(x6 =
0|01010) = (3+1)/(5+2) = 4/7, L0(x6 = 1|01010) = (2+
1)/(5+2) = 3/7. In other words, 3/7 and 4/7 are estimations
of the unknown probabilities P (xt+1 = 0|x1 . . . xt = 01010)
and P (xt+1 = 1|x1 . . . xt = 01010).

We can see that Laplace considered prediction as a set of
estimations of unknown (conditional) probabilities. This ap-
proach to the problem of prediction was developed in [27] and
now is often called on-line prediction or universal prediction
[1], [12], [20]. As we mentioned above, it seems natural to
consider conditional probabilities to be the best prediction,
because they contain all information about the future behavior
of the stochastic process. Moreover, this approach is deeply
connected with game-theoretical interpretation of prediction
(see [14], [29]) and, in fact, all obtained results can be easily
transferred from one model to the other.

Any predictor γ defines a measure by following equation

γ(x1...xt) =
t∏

i=1

γ(xi|x1...xi−1). (2)

For example, L0(0101) = 1
2

1
3

1
2

2
5 = 1

30 . And, vice versa,
any measure γ defines a predictor: γ(xi|x1...xi−1) =
γ(x1...xi−1xi)/γ(x1...xi−1). The same is true for a density:
a predictor is defined by conditional density and, vice versa,
the density is equal to the product of conditional densities:

p(xi|x1...xi−1) = p(x1...xi−1xi)/p(x1...xi−1),

p(x1...xt) =
t∏

i=1

p(xi|x1...xi−1).

The next natural question is how to estimate the precision or
of the prediction and an estimation of probability. Mainly we
will estimate the error of prediction by the Kullback-Leibler
(KL) divergence between a distribution p and its estimation.
Consider an (unknown) source p and some predictor γ. The
error is characterized by the KL divergence

ργ,p(x1 · · ·xt) =
∑
a∈A

p(a|x1 · · ·xt) log
p(a|x1 · · ·xt)
γ(a|x1 · · ·xt)

. (3)

It is well-known that for any distributions p and γ the K-L
divergence is nonnegative and equals 0 if and only if p(a) =
γ(a) for all a, see, for ex., [11]. The following inequality
(Pinsker’s inequality)∑

a∈A

P (a) log
P (a)
Q(a)

≥ log e

2
||P −Q||2. (4)

connects the KL divergence with a so-called variation distance

||P −Q|| =
∑
a∈A

|P (a)−Q(a)|,

where P and Q are distributions over A, see [7]. For fixed t,
ργ,p( ) is a random variable, because x1, x2, · · · , xt are random
variables. We define the average error at time t by

ρt(p‖γ) = E (ργ,p(·)) =
∑

x1···xt∈At

p(x1 · · ·xt) ργ,p(x1 · · ·xt).

(5)
The following inequality shows that the error of Laplace
predictor L0 goes to 0 for any i.i.d. source p :

ρt(p‖L0) < (|A| − 1)/(t + 1) (6)

([28]; see also [32]). So, we can see from this inequality
that the average error of the Laplace predictor L0 (estimated
either by the KL divergence or the variation distance ) goes
to zero for any unknown i.i.d. source, when the sample size
t grows. Moreover, it can be easily shown that the error
(3) (and the corresponding variation distance) goes to zero
with probability 1, when t goes to infinity. Obviously, such
a property is very desirable for any predictor and for larger
classes of sources, like Markov, stationary and ergodic, etc.
However, it is proven in [27] (see also [1], [12], [20]) that
such predictors do not exist for the class of all stationary and
ergodic sources (generated letters from a given finite alphabet).
More precisely, for any predictor γ there exists a source p
and δ > 0 such that with probability 1 ργ,p(x1 · · ·xt) ≥ δ
infinitely often when t → ∞. So, the error of any predictor
does not go to 0, if the predictor is applied to all stationary
and ergodic sources, that is why it is difficult to use (3) and
(5) for comparison of different predictors.

On the other hand, it is shown in [27] that there ex-
ists a predictor R, such that the following Cesaro average
t−1

∑t
i=1 ρR,p(x1 · · ·xt) goes to 0 (with probability 1 ) for

any stationary and ergodic source p, where t goes to infinity.
That is why we will focus our attention on such averages and
by analogy with (5) we define

ρ̄γ,p(x1...xt) = t−1 (log(p(x1...xt)/γ(x1...xt)), (7)

ρ̄t(γ, p) = t−1
∑

x1...xt∈At

p(x1...xt) log
p(x1...xt)
γ(x1...xt)

, (8)

where, as before, γ(x1...xt) =
∏t

i=1 γ(xi|x1...xi−1).
From these definitions and (6) we obtain the following

estimation of the error of the Laplace predictor L0 for any
i.i.d. source:

ρ̄t(L0, p) < ((|A| − 1) log t + c)/t, (9)

where c is a certain constant. So, we can see that the average
error of the Laplace predictor goes to zero for any i.i.d. source
(which generates letters from a known finite alphabet). As
a matter of fact, the Laplace probability L0(x1...xt) is a
consistent estimate of the unknown probability p(x1...xt). The
natural problem is to find a predictor whose error is minimal
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(for i.i.d. sources). This problem was considered and solved
by Krichevsky [17], [18], see also [37], [38]. He suggested
the following predictor:

K0(a|x1 · · ·xt) = (νx1···xt
(a) + 1/2)/(t + |A|/2), (10)

where, as before, νx1···xt
(a) denote the count of letter a oc-

curring in the word x1 . . . xt. We can see that the Krychevsky
predictor is quite close to the Laplace’s one (1). For example,
if A = {0, 1}, x1...x5 = 01010, then K0(x6 = 0|01010) =
(3+1/2)/(5+1) = 7/12,K0(x6 = 1|01010) = (2+1/2)/(5+
1) = 5/12 and K0(01010) = 1

2
1
4

1
2

3
8

1
2 = 3

256 .
The Krichevsky measure K0 can be presented as follows:

K0(x1...xt) =

∏
a∈A(

∏νx1...xt (a)
j=1 (j − 1/2))∏t−1

i=0(i + |A|/2)
. (11)

It is known that (r+1/2)((r+1)+1/2)...(s−1/2) = Γ(s+1/2)
Γ(r+1/2) ,

where Γ( ) is the gamma function. So, (11) can be presented
as follows:

K0(x1...xt) =
∏

a∈A(Γ(νx1...xt
(a) + 1/2) /Γ(1/2) )

Γ(t + |A|/2) /Γ(|A|/2)
. (12)

For this predictor ρ̄t(K0, p) < ((|A|−1) log t+c)/(2t), where
c is a constant, and, moreover, in a certain sense this average
error is minimal: for any predictor γ there exists such a source
p∗ that ρ̄t(γ, p∗) ≥ ((|A| − 1) log t + c)/(2t), see [17], [18].

Now we briefly describe consistent estimations of un-
known probabilities and efficient on-line predictors for general
stochastic processes (or sources of information). Denote by
At and A∗ the set of all words of length t over A and
the set of all finite words over A correspondingly (A∗ =⋃∞

i=1 Ai). By M∞(A) we denote the set of all stationary
and ergodic sources, which generate letters from A and let
M0(A) ⊂ M∞(A) be the set of all i.i.d. processes. Let
Mm(A) ⊂ M∞(A) be the set of Markov sources of order (or
with memory, or connectivity) not larger than m, m ≥ 0. Let
M∗(A) =

⋃∞
i=0 Mi(A) be the set of all finite-order sources.

The Laplace and Krichevsky predictors can be extended
to general Markov processes. The trick is to view a Markov
source p ∈ Mm(A) as resulting from |A|m i.i.d. sources. We
illustrate this idea by an example from [32]. So assume that
A = {O, I}, m = 2 and assume that the source p ∈ M2(A)
has generated the sequence

OOIOIIOOIIIOIO.

We represent this sequence by the following four subse-
quences:

∗ ∗ I ∗ ∗ ∗ ∗ ∗ I ∗ ∗ ∗ ∗∗,

∗ ∗ ∗O ∗ I ∗ ∗ ∗ I ∗ ∗ ∗O,

∗ ∗ ∗ ∗ I ∗ ∗O ∗ ∗ ∗ ∗I∗,

∗ ∗ ∗ ∗ ∗ ∗O ∗ ∗ ∗ IO ∗ ∗.

These four subsequences contain letters which follow OO,
OI , IO and II , respectively. By definition, p ∈ Mm(A) if
p(a|x1 · · ·xt) = p(a|xt−m+1 · · ·xt), for all 0 < m ≤ t, all

a ∈ A and all x1 · · ·xt ∈ At. Therefore, each of the four
generated subsequences may be considered to be generated
by a Bernoulli source. Further, it is possible to reconstruct the
original sequence if we know the four (= |A|m) subsequences
and the two (= m) first letters of the original sequence.

Any predictor γ for i.i.d. sources can be applied for Markov
sources. Indeed, in order to predict, it is enough to store in
the memory |A|m sequences, one corresponding to each word
in Am. Thus, in the example, the letter x3 which follows OO
is predicted based on the Bernoulli method γ corresponding
to the x1x2- subsequence (= OO), then x4 is predicted based
on the Bernoulli method corresponding to x2x3, i.e. to the
OI- subsequence, and so forth. When this scheme is applied
along with either L0 or K0 we denote the obtained predictors
as Lm and Km, correspondingly and define the probabilities
for the first m letters as follows: Lm(x1) = Lm(x2) = . . . =
Lm(xm) = 1/|A| , Km(x1) = Km(x2) = . . . = Km(xm) =
1/|A| . For example, having taken into account (12), we can
present the Krichevsky predictors for Mm(A) as follows:

Km(x1...xt) =
1
|A|t , if t ≤ m ,

1
|A|m

∏
v∈Am

∏
a∈A

((Γ(νx(va)+1/2) / Γ(1/2))

(Γ(ν̄x(v)+|A|/2) / Γ(|A|/2)) , if t > m ,
(13)

where ν̄x(v) =
∑

a∈A νx(va), x = x1...xt. It is worth
noting that the representation (11) can be more convenient
for carrying out calculations. Let us consider an exam-
ple. For the word OOIOIIOOIIIOIO considered in the
previous example, we obtain K2(OOIOIIOOIIIOIO) =
2−2 1

2
3
4

1
2

1
4

1
2

3
8

1
2

1
4

1
2

1
2

1
4

1
2 .

Let us define the measure R, which, in fact, is a consistent
estimator of probabilities for the class of all stationary and
ergodic processes with a finite alphabet. First we define a
probability distribution {ω1, ω2, ...} on integers {1, 2, ...} by

ωi = 1/ log(i + 1)− 1/ log(i + 2), i = 1, 2, ... . (14)

(In what follows we will use this distribution, but results
described below are obviously true for any distribution with
nonzero probabilities.) The measure R is defined as follows:

R(x1...xt) =
∞∑

i=0

ωi+1 Ki(x1...xt). (15)

It is worth noting that this construction can be applied to the
Laplace measure (if we use Li instead of Ki) and any other
family of measures.

The main properties of the measure R are connected with
the Shannon entropy, which is defined as follows

H(p) = lim
m→∞

− 1
m

∑
v∈Am

p(v) log p(v). (16)

Theorem 1. [27]. For any stationary and
ergodic source p the following equalities are valid:
i) limt→∞

1
t log(1/R(x1 · · ·xt)) = H(p) with probability

1, ii) limt→∞
1
t

∑
u∈At p(u) log(1/R(u)) = H(p).
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Now we consider universal codes. By definition, a code
U is universal if for any stationary and ergodic source p the
following equalities are valid:

lim
t→∞

|U(x1 . . . xt)|/t = H(p) (17)

with probability 1, and

lim
t→∞

E(|U(x1 . . . xt)|)/t = H(p), (18)

where H(p) is the Shannon entropy of p, E(f) is a mean
value of f .

III. FINITE-ALPHABET PROCESSES

A. The estimation of (limiting) probabilities
The following theorem shows how universal codes can be

applied for probability estimations.
Theorem 2. Let U be a universal code and

µU (u) = 2−|U(u)|/Σv∈A|u| 2−|U(v)|. (19)

Then, for any stationary and ergodic source p the following
equalities are valid: i) limt→∞

1
t (− log p(x1 · · ·xt) −

(− log µU (x1 · · ·xt))) = 0 with probability 1,
ii) limt→∞

1
t

∑
u∈At p(u) log(p(u)/µU (u)) = 0,

iii) limt→∞
1
t

∑
u∈At p(u) |p(u)− µU (u)| = 0.

So, we can see that, in a certain sense, the measure µU

is a consistent (nonparametric) estimation of the (unknown)
measure p.

Nowadays there are many efficient universal codes (and
universal predictors connected with them), see [13], [15],
[21], [25], [27], [34], which can be applied to estimation. For
example, the above described measure R is based on the code
from [26], [27] and can be applied for probability estimation.
More precisely, Theorem 2 (and the following theorems) are
true for R, if we replace µU by R.

It is important to note that the measure R has some
additional properties, which can be useful for applications.
The following theorem will be devoted to description of
these properties (whereas all other theorems are valid for all
universal codes and corresponding them measures, including
the measure R).

Theorem 3. [27], [28]. For any Markov process p with
memory k

i) the error of the probability estimator, which is
based on the measure R, is upper-bounded as follows:
1
t

∑
u∈At p(u) log(p(u)/R(u)) ≤ (|A|−1)|A|k log t

2 t + O( 1
t ),

ii) in a certain sense the error of R is asymptotically
minimal: for any measure µ there exists a k−memory Markov
process pµ such that 1

t

∑
u∈At pµ(u) log(pµ(u)/µ(u)) ≥

(|A|−1)|A|k log t
2 t + O( 1

t ),
iii) Let Θ be such a set of stationary and ergodic

processes that there exists a measure µΘ for which the
estimation error of the probability goes to 0 uniformly:
limt→∞ supp∈Θ ( 1

t

∑
u∈At p(u) log(p(u)/µΘ(u)) ) =

0. Then the error of estimator, which is based
on the measure R, goes to 0 uniformly, too:
limt→∞ supp∈Θ ( 1

t

∑
u∈At p(u) log(p(u)/R(u)) ) = 0.

B. Prediction

As we mentioned above, any universal code U can be
applied for prediction. Namely, the measure µU (19) can be
used for prediction as the following conditional probability:

µU (xt+1|x1...xt) = µU (x1...xtxt+1)/µU (x1...xt). (20)

Theorem 4. Let U be a universal code and p be any station-
ary and ergodic process. Then i) limt→∞

1
t {E(log p(x1)

µU (x1)
)+

E(log p(x2|x1)
µU (x2|x1)

) + . . . + E(log p(xt|x1...xt−1)
µU (xt|x1...xt−1)

)} = 0,

ii) lim
t→∞

E(
1
t

t−1∑
i=0

(p(xi+1|x1...xi)−µU (xi+1|x1...xi))2) = 0 ,

iii) lim
t→∞

E(
1
t

t−1∑
i=0

|p(xi+1|x1...xi)−µU (xi+1|x1...xi)|) = 0 .

Comment. In fact, the statements ii) and iii) are equivalent,
because one of them follows from the other. For details see
Lemma 2 in [33].

The above-described measure R has one additional property,
if it is used for prediction.

Theorem 5 . ([28]) for any Markov process p (p ∈ M∗(A))
the following is true: limt→∞ log p(xt+1|x1...xt)

R(xt+1|x1...xt)
= 0

with probability 1, where R(xt+1|x1...xt) =
R(x1...xtxt+1)/R(x1...xt).

IV. REAL-VALUED TIME SERIES

Let Xt be a time series with each Xt taking values
in some interval Λ. The probability distribution of Xt is
unknown but it is known that the time series is stationary
and ergodic. Let {Πn}, n ≥ 1, be an increasing sequence
of finite partitions that asymptotically generates the Borel
sigma-field on Λ, and let x[k] denote the element of Πk

that contains the point x. (Informally, x[k] is obtained by
quantizing x to k bits of precision.) Suppose that the joint
distribution Pn for (X1, . . . , Xn) has a probability den-
sity function pn(x1, . . . , xn) with respect to a sigma-finite
measure λn. (For example, λn can be Lebesgue measure,
counting measure, etc.) For integers s and n we define the
following approximation of the density ps(x1, . . . , xn) =
P (x[s]

1 , . . . , x
[s]
n )/λn(x[s]

1 . . . x
[s]
n ). Let p(xn+1|x1, . . . , xn) de-

note the conditional density given by the ratio p(x1, . . . , xn+1)
/p(x1, . . . , xn) for n > 1. It is known that for stationary and
ergodic processes there exists a so- called relative entropy rate
h defined by h = limn→∞ E(log p(xn+1|x1, . . . , xn)), where
E denotes expectation with respect to P ; see [3]. We also
consider hs = limn→∞ E(log ps(xn+1|x1, . . . , xn)).

It is shown by Barron [3] that almost surely
limt→∞

1
t log p(x1 . . . xt) = h. Applying the same

theorem to the density ps(x1, . . . , xt), we obtain that
a.s. limt→∞

1
t log ps(x1, . . . , xt) = hs.

Let U be a universal code, which is defined for any finite
alphabet. We define the corresponding density rU as follows:

rU (x1 . . . xt) =
∞∑

i=0

ωi2−|U(x
[i]
1 ...x

[i]
t )|/λt(x

[i]
1 . . . x

[i]
t ) . (21)
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(It is supposed here that the code U(x[i]
1 . . . x

[i]
t ) is defined for

the alphabet, which contains |Πi| letters.)
It turns out that, in a certain sense, the density rU (x1 . . . xt)

estimates a unknown density p(x1, . . . , xt).
Theorem 6. Let Xt be a stationary ergodic process with

densities p(x1 . . . xt) = dPt/dλt such that

lim
s→∞

hs = h < ∞, (22)

where h and hs are relative entropy rates. Then
limt→∞

1
t log p(x1...xt)

rU (x1...xt)
= 0 with probability 1 and

limt→∞
1
t E(log p(x1...xt)

rU (x1...xt)
) = 0 .

The following theorem describes properties of conditional
probabilities rU (x|x1...xm) = rU (x1...xmx)/rU (x1...xm)
which, in turn, is connected with the prediction problem.
We will see that the conditional density rU (x|x1...xm) is a
reasonable estimation of p(x|x1...xm).

Theorem 7. Let B1, B2, ... be a sequence
of measurable sets. Then the following equalities
are true: i) limt→∞ E( 1

t

∑t−1
m=0(P (xm+1 ∈

Bm+1|x1...xm) − RU (xm+1 ∈ Bm+1|x1...xm))2) = 0 ,
ii) E( 1

t

∑t−1
m=0 |P (xm+1 ∈ Bm+1|x1...xm) − RU (xm+1 ∈

Bm+1|x1...xm))| = 0 .
We have seen that in a certain sense the estimation rU

approximates the density p. The following theorem shows that
rU can be used instead of p for estimation of average values
of certain functions.

Theorem 8. Let f be an integrable function, whose
absolute value is bounded by a certain constant M . Then the
following equalities are valid:

i) limt→∞
1
t E(

∑t−1
m=0(

∫
f(x)p(x|x1...xm)dλm −∫

f(x) rU (x|x1...xm) dλm)2) = 0,

ii) limt→∞
1
t E(

∑t−1
m=0 |

∫
f(x)p(x|x1...xm)dλm −∫

f(x)rU (x|x1...xm)dλm|) = 0.
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