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Abstract

We consider the problem of testing the hypothesis H0 that the letters from some alphabet
A={a1; a2; : : : ; ak} obey the uniform distribution, when k is large. The problem is of interest for
random number testing and some cryptographic applications where k =210 ∼ 230 and greater. In
such a case it is di6cult to use the well-known chi-square test since the sample size for it must
be greater than k.

We suggest an adaptive chi-square test which can be successfully applied for testing some
kinds of H1 even if the sample size is much smaller than k. This statement is proved theoretically
and con:rmed experimentally.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The chi-square test is one of the most popular hypothesis tests, which is widely
applied in economics, biology, cryptography and many other :elds. For example,
the chi-square test is used for testing random number generators and block ciphers’
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suitability for random number generators (see, for example, Knuth, 1981; Rukhin
et al., 2001).
In such applications the number of categories (and, consequently, the number of

degrees of freedom of �2 distribution) is very large and, thereby, the sample size
should be also large. So, in such cases, performing the chi-square test requires a lot
of time. Moreover, it is often di6cult to obtain such large samples and the chi-square
test cannot be applied.
We suggest a new method, which we call the adaptive chi-square test. It is shown

that the new test can be applied when the sample size is much smaller than that
required for the usual chi-square test.
First, let us explain the main idea of the new test. Let there be a hypothesis H0 which

states that the letters from some alphabet A = {a1; a2; : : : ; ak}, k ¿ 2, are distributed
uniformly (i.e. p(a1)=p(a2)= · · ·=p(ak)=1=k) against the alternative hypothesis H1

that the true distribution is not uniform. Let there be given a sample which can be used
for testing. The sample is divided into two parts, which are called the training sample
and the testing sample. The training sample is used for estimation of frequencies of
the letter occurrences. After that the letters of the alphabet A are combined into subsets
A1; A2; : : : ; As; s¿ 2, in such a way that, :rst, one subset contains letters with close
(or even equal) frequencies of occurrence and, second, s is much less than k (say,
k=220; s=2). Then, the set of subsets {A1; A2; : : : ; As} is considered as a new alphabet
and the new hypothesis Ĥ0:p(A1) = |A1|=k; p(A2) = |A2|=k; : : : ; p(As) = |As|=k and the
alternative hypothesis, which is the negation of Ĥ0, are tested based on the second
(‘testing’) part of the sample. Obviously, if H0 is true, then Ĥ0 is also true and, if Ĥ1

is true, then H1 is true. That is why this new test can be used for testing the initial
H0 and H1. The idea of such a scheme is quite simple. If H1 is true, then there are
letters with relatively large and relatively small probabilities. Generally speaking, the
high-probable letters will have relatively large frequencies of occurrence and will be
accumulated in some subsets Ai whereas low-probable letters will be accumulated in
the other subsets. That is why this diMerence can be found based on the testing sample.
It should be pointed out that a decrease in the number of categories from large k to
small s can essentially increase the power of the test and, therefore, can essentially
decrease the required sample size. More exactly, it will be shown that the sample size
can be decreased in

√
k times, which can be important when k is large. We carried

out some experiments in addition to a theoretical investigation of the suggested test.
Namely, we tested ciphered texts in English and in Russian in order to distinguish them
from random sequences. It is worth noting that the problem of recognition of ciphered
texts in a natural language is of some interest for cryptology, see Schneier (1996). It
turns out, that the suggested test can distinguish ciphered English and Russian texts
from random bit sequences, basing on samples which are essentially smaller than it is
required for usual chi-square test.
It should be noted that the learning techniques has been applied to many statistical

problems. For example, Markov Approximation and Neural Network based clustering
are used to make testing more e6cient, see, for example, reviews in Vapnik (1995)
and Devroye et al. (1996). Besides, it is known that strati:cation can be used as a tool
in the analysis of randomness, see L’Ecuyer and Simard (1999) and Wegenkittl and
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Matsumoto (1999). In contrast to those approaches, the suggested method is intended
to solve one particular statistical problem, which was not considered earlier. Namely,
it is oMered to increase the power of the chi-square test by learning and grouping, in
case when the sample size is relatively small.
The rest of the paper is organized as follows. Section 2 contains necessary informa-

tion from the mathematical statistics and some auxiliary results about the chi-square
test. The description of the suggested test and its properties are given in Section 3.
Section 4 contains experimental results about recognition of ciphered texts. Appendix
contains some proofs.

2. Chi-square test

First we give some required information concerning the chi-square test. Let there be
two following hypotheses about a probability distributions on a set (or alphabet) A:

H0: p(a1) = p0
1; p(a2) = p0

2; : : : ; p(ak) = p0
k ; H1 =@H0; (1)

where p = (p0
1; p

0
2; : : : ; p

0
k) is a certain distribution on the A. Let x1; x2; : : : ; xN be a

sample and �i is the number of occurrences of ai ∈A in the sample. (In statistics
a1; : : : ; ak are often called categories.) The chi-square test is applied by calculating

x2 =
k∑

i=1

(�i − Np0
i )

2

Np0
i

: (2)

The less x2, the more probable H0. More exactly, when the chi-square test is applied,
there is such a threshold constant �, that H0 is accepted, if x2 ¡�. Otherwise, H0 is
rejected. (The constant � depends on k and the level of signi:cance).
It is known that x2 asymptotically follows the chi-square distribution with (k − 1)

degrees of freedom (�2k−1) if H0 is true. On the other hand, if H1 is true, x2 asymp-
totically follows a so called noncentral chi-square distribution with (k − 1) degrees of
freedom and a parameter � (�̂2�;k−1) where � is de:ned by

�= N�; �=
k∑

i=1

(p0
i − p1

i )
2

p0
i

: (3)

Here N is the sample size and p1
k = p(ak) when H1 is true, see Kendall and Stuart

(1961) and Lehmann (1959).
It is shown by Kendall and Stuart (1961) that

EH0(x
2) = k − 1; VH0(x

2) = 2(k − 1); (4)

EH1(x
2) = (k − 1) + �; VH1(x

2) = 2(k − 1) + 4�; (5)

where EHi and VHi are the mean value and variance, correspondingly, when Hi is true,
i = 1; 2:
If the level of signi:cance (or a Type I error) of the chi-square test is �; �∈ (0; 1);

then H0 is rejected is if x2¿ �2k−1;(1−�). (Here �2k−1;(1−�) is the (1 − �)-value of the
�2k−1 distribution.)
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It is important to note that such an approximation is valid when N is quite large.
Thus, many authors recommend to take such a sample size N that Np0

i ¿ 5 for all
i = 1; : : : ; k. (If this inequality is not true for some category i, this category should be
combined with some other category and this procedure should be repeated as long as
the inequality becomes true for all categories.) Obviously, if the inequality is true, then
N¿ 5k.

3. Adaptive chi-square test: description and theoretical consideration

First we give some informal explanation. Let us assume that there exist such letters
ai from the alphabet A for which the fractions (p1

i =p
0
i ) are equal. If we combine the

letters from A into subsets in such a way that one subset contains letters for which the
fraction (p1

i =p
0
i ) are equal, then the required sample size can be decreased. Indeed, if

we denote the number of such groups as Ok, we obtain from (4) and (5) the equalities

EH0(x
2) = Ok − 1; VH0(x

2) = 2( Ok − 1);

EH1(x
2) = ( Ok − 1) + �; VH1(x

2) = 2( Ok − 1) + 4�:

Obviously, the number of groups Ok is less than k and we can see from the last equalities,
(4) and (5) that the diMerence EH1(x

2)−EH0(x
2) is the same for the initial and grouped

alphabet, whereas both variancies VH0(x
2) and VH1(x

2) of the grouped alphabet are less
than for the initial one. That is why the required sample size can be decreased, if the
chi-square test is applied to the grouped alphabet.
We do not consider this method in details because the alternative hypothesis H1 is

not known beforehand. In order to overcome obstacles, we suggest, :rst, to estimate the
frequencies of occurrence of letters from the alphabet A using a part of the sample and,
then, to implement the grouping using frequencies instead of probabilities p1

1; p
1
2; : : : ; p

1
k .

After that the independent second part of the sample is used for testing.
The more formal description of the suggested adaptive chi-square test is as follows.

There are hypotheses H0 and H1 de:ned by (1) and the sample x1; x2; : : : ; xN . The
sample is divided into two following parts x1; x2; : : : ; xm and xm+1; x2; : : : ; xN , which
are called the training sample and the testing sample, correspondingly. The training
part is used for :nding the frequencies of occurrence of letters from the alphabet A
which will be denoted by p̃1

1; p̃
1
2; : : : ; p̃

1
k . Then, we divide the alphabet A into subsets

{A1; A2; : : : ; As}, s¿ 1, combining the letters for which the fractions (p̃1
i =p

0
i ) are close,

in one subset. After that the new following hypotheses

Ĥ0: p(A1) =
∑
ai∈A1

p0
i ; p(A2) =

∑
ai∈A2

p0
i ; : : : ; p(As) =

∑
ai∈As

p0
i ; Ĥ1 =@Ĥ0

are tested based on the testing sample xm+1; x2; : : : ; xN . We do not describe the exact rule
of :nding the parameters m;N and s and do not also de:ne exactly how to construct
the subsets {A1; A2; : : : ; As}, but we recommend to implement some experiments for
:nding the parameters, which make the total sample size N minimal (or, at least,
acceptable). The point is that there are many problems in cryptography and other
applications where it is possible to implement some experiments for optimizing the
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parameter values and, then, to test hypothesis basing on independent data. For example,
there are some problems in cryptography where it is possible to carry out experiments
with known ”secret” keys for :nding suitable m and N and, then, use them for real
problems. Such a problem will be considered in the next paragraph while we proceed
with theoretical investigation at the rest of this paragraph.
Let us consider an example where the required sample size of the adaptive chi-square

test is equal to O(
√
k), whereas a usual chi-square test can be used if the sample size

is more than k. Let us assume, that the number of categories k is even and let

p0
1 = p0

2 = · · ·= p0
k =

1
k ; (6)

p1
i1 = p1

i2 = · · ·= p1
ik=2 =

1
k (1 + 1=2);

p1
i(k=2)+1

= · · ·= p1
ik =

1
k (1− 1=2); (7)

where {i1; : : : ; ik=2}∪{i(k=2)+1; : : : ; ik}={1; : : : ; k}. It turns out that the adaptive chi-square
test can be successfully applied when the total sample size is O(

√
k).

Theorem. Let � and � be in the interval (0; 1). Then, we can 8nd such k�;� that for
each even k ¿k�;� there exists an adaptive chi-square test with the training sample
size m(k) and testing sample size n(k), such that for every partition {{ai1 ; : : : ; aik=2};
{ai(k=2)+1 ; : : : ; aik}}, and H0;H1 complying with (6), (7), the following is true:

(i) (m(k) + n(k))6 ċ
√
k, where ċ¿ 0 and does not depend on k,

(ii) the Type I error is less than � and the Type II error is less than �.

Proof. Let Âi be the set of letters from A which occurred i times in the training sample
x1x2 : : : xm; i = 0; 1; : : : : The proof will be based on the following lemmas.

Lemma 1. If k goes to in8nity, C is a positive constant, H0 is true and m= 	C√k
,
then E(

∑k
r=2(r−1)|Âr|6 SC, where E() means the expectation and SC does not depend

on k.

Lemma 2. If k goes to in8nity, C is a positive constant, m= 	C√k
 and H1 is true,
then

E


∑

a∈Â1

p(a)


= 5C=(4

√
k) + O(1=k);

E


∑

a∈Â2

p(a)


= 7C2=(4k) + o(1=k);

E


 k∑

r=3


∑

a∈Âr

p(a)




= o(1=k):
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The proofs of the lemmas are given in appendix. Let us proceed with the proof of
the theorem.
Let the training sample size m(k) and the tasting sample size n(k) be de:ned by

m(k) = �
√
k�; n(k) = 	c

√
k
; (8)

where the positive constant c will be de:ned later.
By de:nition, the test uses two following subsets (superletters):

A0 = Â0; A1 =
k⋃

r=1

Âr : (9)

Obviously, m(k) =
∑k

r=1 r|Âr| and, consequently,
|A1|= m(k)−∑k

r=1 (r − 1)|Âr|. From this equality and (8) we obtain

√
k −

k∑
r=2

(r − 1)|Âr|¡ |A1|¡
√
k + 1: (10)

Let us de:ne

P(Ai\Hj) =
∑
a∈Ai

p(a); i; j = 0; 1: (11)

P(Ai\Hj) are random variables for i; j = 0; 1, because they depend on the training
sample x1; : : : ; xm. Their estimations will be based on Lemmas 1, 2 and the following
well-known Markov inequality: For any non-negative random variable � and any �¿ 0

Pr{�¿�}6E(�)=�:

From Lemma 1 and (8) we can see that E(
∑k

r=2(r − 1)|Âr|)¡C̃, where C̃ does not
depend on the alphabet size k. If we de:ne � = 3

√
k and apply Markov inequality to

|⋃k
r=2 Âr| we obtain the inequality

Pr

{
k∑

r=2

(r − 1)|Âr|¿ 3
√
k

}
6 C̃= 3

√
k:

From the last inequality and (10) we obtain the estimation

Pr{‖A1| −
√
k|¿ 3

√
k}6 C̃= 3

√
k:

If the hypothesis H0 is true, then p(a) = 1=k for all a∈A and we obtain from the last
inequality and (9), (11) that

Pr
{∣∣∣∣P(A1\H0)− 1√

k

∣∣∣∣¿ (1=
3
√
k2)
}
6 C̃= 3

√
k:

In the same way we can derive from the Lemma 2 that

Pr
{∣∣∣∣P(A1\H1)− 5

4
√
k

∣∣∣∣¿ (1=
3
√
k2)
}
6 C̃1=

3
√
k:
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Taking into account that the testing sample size n(k)= 	c√k
 (see (8)), we can see
from two last inequalities that, with the probability 1,

P(A1\H0)n(k) = c + o(1); P(A1\H1)n(k) = 5c=4 + o(1);

where k→∞. In torn, from those equalities and (2) we can see that (with probability 1)
x2 = c=16 + o(1); if H1 is true and x2 = o(1), if H0 is true. Taking into account that
chi-square test can be applied if the sample size is not less than 5k̃, where k̃ is number
of categories (or superletters) we de:ne the constant Tc by Tc=max{5; 16�21;1−�}. Now
we can see that the test can be applied, if c in (8) is not less than Tc. From the de:nition
(2) and two last equalities we can see that H0 will be accepted with probability 1, if
H0 is true, and rejected (with probability 1), if H1 is true, when k → ∞. It means that
there exists such k∗ that H0 will be accepted with probability larger than 1− �; if H0

is true and k ¿k∗, and H0 will be rejected with probability larger than (1− �), if H1

is true and k ¿k∗. We obtain from the de:nition Tc and (8) that the total sample size
(m(k) + n(k)) is less than ( Tc + 1)

√
k. So, we can see that the theorem is proved for

k�;� = k∗.

Comment 1. The theorem can be extended. Namely, if we consider the following more
general hypothesis H1

p1
i1 = p1

i2 = · · ·= p1
ik=2 =

1
k (1 +  );

p1
i(k=2)+1

= · · ·= p1
ik =

1
k (1−  );

 ∈ (0; 1) instead of (7), we can prove the claim 2, but the constant c will be depended
on  . The way of proving is completely the same.

Comment 2. It can be easily seen that the test power is maximal if the training sample
size and the testing sample size are equal, but we do not focus an attention on this
fact, because, generally speaking, there exist alternative hypotheses H1 for which it is
not true.

4. The experiments

As it was shown by Maurer (1992), the problem of testing randomness is very
important for many cryptographic applications. In this section we consider one of such
applications concerned with the block ciphers.
Block ciphers have been widely used in practice and attracted attention of many

researches. Recently, National Institute of Standards and Technology (USA) carried
out a competition “Advanced Encryption Standard (AES)”, whose purpose was to :nd
a new block cipher which could be used as a standard. The cipher has to meet many
requirements and, in particular, its output should look like completely random even
if the input is not; see Nechvatal et al. (2000) and Soto and Bassham (2001). (Here
the completely random output means a bit sequence generated by the Bernoulli source
with equal probabilities of 0’s and 1’s.) For example, even if the input is a natural
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language text (English, Russian, etc.), the ciphertext has to be indistinguishable from
a completely random sequence.
Of course, theoretically, this cannot be achieved. The point is that a usual represen-

tation of texts in computers is very redundant. More exactly, one letter of the text is
often represented as an 8-bit word (or byte). So, if we take into account the well-known
estimation of the Shannon entropy of English (see, e.g., Cover and Thomas, 1991),
we can see that the Shannon entropy per bit is much less than 1. It can be easily seen
that the Shannon entropy of the ciphered text is not greater than the sum of the key
entropy and the entropy of the input. Hence, if, for example, someone uses such a
cipher for which the lengths of input and output :les are equal and applies this cipher
to an English language text using one key for the large text, the Shannon entropy of
the ciphered text will be approximately the same as for the original text and, con-
sequently, will be less than 1 per bit. It is well known that the Shannon entropy of
the completely random sequence is 1 (per bit), that is why the ciphered text in En-
glish (and other languages) is not completely random, if a large :le is ciphered using
one key.
So, apparently, the problem of constructing tests which can distinguish ciphered

texts from random sequences can be considered as a good example for estimation
of a power of statistical tests, because, on the one hand, it is known that ciphered
texts cannot be completely random in principle and, on the other hand, the ciphers are
constructed in such a way that the ciphered sequences should look random. (As much
as possible). Besides, the problem of testing of the ciphered texts is of some interest
for cryptography, see Schneier (1996). That is why the problem of distinguishing a
ciphered text from a random bit sequence was chosen for experimental investigation
of the adaptive chi-square test.
Let us describe the experiments in more details. We considered the block ciphers

Rijndael and RC6. The :rst cipher has been proposed by NIST as Advanced Encryption
Standard (AES) and the second one was selected as a :nalist for AES and is widely
used in practice. We applied adaptive chi-square test to ciphered English and Russian
texts using as source of texts “Moshkov Library” (http://lib.ru/). Texts were combined
in large :les and each :le was ciphered by either Rijndael or RC6 with 128-bit block
length in such a way that one key was used for ciphering of all blocks from one :le.
(Such mode of encryption is called Electronic Code Book). Then we took 40 :les of
texts in English and 40 such :les in Russian. Each :le was ciphered with a randomly
chosen key and tested for randomness using new algorithms and the usual chi-square
test.
When the new algorithm was applied, each ciphered :le was divided into 24-bit

words and the obtained sequence was considered as a text over an alphabet of 224

letters. (By de:nition, the alphabet letters are all 24-bit words.) The adaptive chi-square
test was applied to testing the hypothesis about randomness (i.e. H0={p(a1)=p(a2)=
· · ·=p(a224)=2−24}, H1=@H0). The ciphered :les were divided into two equal parts
in such a way that the :rst part was used as a training sample and the second part as
a testing sample. The training sample was used for estimation of the number of the
letter occurrences and the alphabet was divided into three subsets {A0; A1; A2} in such
a way that the set A0 contained letters which were not met in the training sample,

http://lib.ru/
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Table 1
Results of experiments

Length 102,400 204,800 512,000 1,024,000 2,048,000

Usual/new Usual/new Usual/new Usual/new Usual/new
RC6 Russian 4/11 4/13 4/28 23/32 27/35
RC6 English 7/19 6/24 5/31 27/31 27/35
AES Russian 3/10 4/18 5/24 18/31 25/34
AES English 4/17 8/26 8/28 25/30 30/33

A1 contained letters which were met once and A2 contained all other letters. Then,
according to description of the adaptive chi-square test, the hypotheses

Ĥ0 = {p(Ai) = |Ai|=224; i = 0; 1; 2}; Ĥ1 =@Ĥ0

were tested based on the testing sample. The level of signi:cance was 0.05.
It is worth noting that a lot of experiments were carried out for :nding the value of

the parameter s, the lengths of training and testing samples and the number of subsets.
The aim of the experiments was to :nd the parameters, which maximize the test power.
It is also important to note that the new (independent) data were used for described
below experiments.
The results are given in Table 1. For example, the second column contains results for

102,400-:les. The number 11 from the :rst column “new” means that the hypothesis
H0 about randomness was rejected 11 times, when 40 Russian :les ciphered by RC6
were tested by the adaptive chi-square test. Analogously, the last number 33 in the last
column “new” means that H0 was rejected 33 times, when 40 English :les ciphered
by AES were tested by the adaptive chi-square test.
As it was mentioned above, the usual chi-square test was also applied for testing H0.

For this purpose each :le was considered as a bit stream and divided into s-bit subwords
(blocks) and the hypothesis H0 that each word u∈Bs = {0; 1}s has the probability 2−s

was tested against H1 =@H0, where s took values 1; 2; : : : : As it has been noted, the
chi-square test can be applied for testing H0 if the sample size is not less than 5|B|.
That is why H0 was tested for such s that 8L=s¿ 52s, where L is the length of the :le
in bytes. (Indeed, the sample size is equal to �8L=s� as well as the alphabet size is 2s.)
Thus, for the :les of the length of 102,400 bytes H0 was tested for s= 1; 2; 3; : : : ; 13,
for the length 204,800 H0 was tested for s=1; 2; 3; : : : ; 14, etc. As before, the level of
signi:cance was 0.05.
The largest number of cases when H0 was rejected is written down in the table. (So,

we write down the best result for the usual chi-square test over all possible values of s.)
For example, 40 Russian texts ciphered by RC6 were tested by the usual chi-square test
for the block lengths s=1; 2; : : : ; 14. When s=1, H0 was rejected 2 times, when s=2–3
times, etc. The maximal value of rejections was 4 and it was obtained when s= 8; 10
and 12. So, 4 is written down in the corresponding column “usual”. Similarly, when
40 2,048,000-byte English :les ciphered by AES were tested by the usual chi-square
test with s = 16, H0 was rejected 30 times and this number of rejections was larger
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than for all other values of the block length s. That is why 30 is written down at the
bottom of the last column “usual”.
We can see from the table that the new test can detect non-randomness more

e6ciently than the usual chi-square test. In other words, the power of the adaptive
chi-square test is larger than that of the usual one, when the sample size is relatively
small.
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Appendix A

Proof of Lemma 1. From (6) we obtain

E(|Â2|) = k

(
m

2

)(
1
k

)2(
1− 1

k

)m−2

=
1
k
m(m− 1)

2

[(
1− 1

k

)k](m−2)=k

:

Obviously, E(|Â2|)6m2=(2k). From the equality m = 	C√k
, we can see, that
E(|Â2|) = O(1). For Âr ; r ¿ 2, analogously

E(|Âr|) = k

(
m

r

)(
1
k

)r (
1− 1

k

)m−r

¡
1
r!

1

k
r
2−1

+ o
(

1

k
r
2−1

)
:

If we upper bound the last value by 1=k(r=2−1) and calculate the sum of the geometrical
progression, we obtain that

∑k
r=2(r − 1)E(|Âr|) = o(1).

The statement of the lemma follows from three last equalities and the last inequality.
The lemma is proved.

Proof of the lemma 2. Let us de:ne A+
i ={ai1 ; : : : ; aik=2}∩ Âi and A−

i ={aik=2+1 ; : : : ; aik}∩
Âi; i = 0; 1; : : :, and let the number of occurrences of letters from {ai1 ; : : : ; aik=2} and
{ai(k=2)+1 ; : : : ; aik} in the training sample x1 : : : xm be m1 and m2, correspondingly. Obvi-
ously,

E(m1) =
m
2
(1 + 1=2); E(m2) =

m
2
(1− 1=2): (A.1)

From the de:nition (7) we can see that

E

(∑
a∈A1

p(a)

)
= E


∑

a∈A+
1

p(a)


+ E


∑

a∈A−
1

p(a)




= E(|A+
1 |)(3=(2k)) + E(|A−

1 |)(1=(2k)): (A.2)
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Let us estimate E(|A+
1 |) and E(|A−

1 |). For each m1 we obtain the following:

E(|A+
2 |) = k

(
m1

2

)(
3
2k

)2(
1− 3

2k

)m1−2

6
9
4k

m1(m1 − 1)
2

:

If we take into account that m16m and m= C
√
k +O(1), we can see that

EH1(|A+
2 |)¡ 9C2=8 + o(1): (A.3)

Analogously, for each m1

E(|A+
r |)6 k

(
m

r

)(
3
2k

)r (
1− 3

2k

)m1−r

¡
3r

2rr!
1

k(r=2)−1 + o
(

1
k(r=2)−1

)
:

If we upper bound the last value by 3r=(2rk(r=2−1)) and calculate the sum of the
geometrical progression, we obtain that

∑k
r=2 E(|A+

r |) = o(1). Analogously, we can
easily obtain that

EH1(|A−
2 |)¡C2=8 + o(1);

k∑
r=2

E(|A−
r |) = o(1):

By de:nition, m1 =
∑k

r=1 r|A+
r |; m2 =

∑k
r=1 r|A−

r | and we obtain from (A.3) and the
last inequalities that

E(|A+
1 |) = E(m1) + O(1); E(|A−

1 |) = E(m2) + O(1):

From this equalities, (A.2) and (A.1) we can see that

EH1(P{a∈A1}) = 1
2
m
k
(3=2)2 +

1
2
m
k
(1=2)2 + O

(
1
k

)
:

If we take into account that m = 	C√k
 we derive the :rst statement of the lemma
from the last equality. The proof of other statements is completely analogous. The
lemma is proved.
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