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Abstract—The Vernam cipher, or one-time pad, plays an important role in cryptography
because it is perfectly secure. In this cipher a key is a sequence of equiprobable independently
generated symbols. We show that under small disturbance of these properties the obtained
cipher is close to the Vernam cipher in the case where the enciphered plaintext and the key are
generated by stationary ergodic sources.
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1. INTRODUCTION

We consider the classical problem of transmitting secret messages from a sender (Alice) to a
receiver (Bob) via an open channel which can be accessed by an adversary (Eve). It is assumed
that Alice and Bob (but not Eve) know a so-called key, which is a word in a certain alphabet.
Before transmitting a message to Bob, Alice encrypts it, and Bob, having received an encrypted
message (ciphertext), decrypts it to recover the plaintext.

We consider the so-called running-key ciphers where the plaintext X1 . . . Xt, key sequence
Y1 . . . Yt, and ciphertext Z1 . . . Zt belong to the same alphabet A = {0, 1, . . . , n − 1}, where n ≥ 2.
We assume that enciphering and deciphering are given by the rules

Zi = c(Xi, Yi), i = 1, . . . , t,

Xi = d(Zi, Yi), i = 1, . . . , t,

so that d(e(Xi, Yi), Yi) = Xi. The functions c and d are called the coder and decoder, respectively.
Often, the encoder and decoder are defined as

Zi = (Xi + Yi) mod n, Xi = (Zi − Yi) mod n, (1)

i.e., c(Xi, Yi) = (Xi + Yi) mod n and d(Zi, Yi) = (Zi − Yi) mod n. In the case of n = 2 relation (1)
can be represented as

Zi = (Xi ⊕ Yi), Xi = (Zi ⊕ Yi), (2)

where a⊕ b = (a+ b) mod 2.

A running-key cipher (1) is called a Vernam cipher (or a one-time pad) if symbols of a key
sequence are equiprobable and independent, i.e., for any word k1 . . . kt, ki ∈ A, we have P (Y1 . . . Yt =
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k1 . . . kt) = n−t. This cipher plays an important rule in cryptography because it is perfectly
secure [1]. This means that

P (X1 . . . Xt) = P (X1 . . . Xt |Z1 . . . Zt)

for all X1 . . . Xt ∈ At and Z1 . . . Zt ∈ At; i.e., informally, the uncertainty on the plaintext X1 . . . Xt

does not change if the ciphertext Z1 . . . Zt becomes known. Using the Shannon entropy, this prop-
erty can be represented as

h(X1 . . . Xt) = h(X1 . . . Xt |Z1 . . . Zt),

where h(X1 . . . Xt) and h(X1 . . . Xt |Z1 . . . Zt) are the unconditional and conditional entropies of
the plaintext X1 . . . Xt.

If a plaintext is generated by a stationary ergodic source, then the perfect secrecy of the Vernam
cipher has a simple interpretation explaining the sense of this notion. As follows from the famous
Shannon–McMillan–Breiman theorem, all set of messages X1 . . . Xt for large t can be divided into
two parts: 2h(X1...Xt) messages whose probabilities are close in magnitude and in total amount to
almost 1, and the set of the other messages with the total probability close to 0. Eve knows that
the ciphertext almost surely belongs to the first subset, but all messages in this subset have close
probabilities and the number of such messages grows exponentially (as 2ht, where h is the entropy
of the source). This is why Eve cannot determine the plaintext.

In the present paper we consider the case where a key sequence is generated by a stationary
ergodic source and slightly differs from equiprobable and independent symbols. We show that
properties of such a cipher remain to be close to the Vernam cipher in a certain sense. More precisely,
we show that in this case the set of messages with close probabilities with the total probability
close to 1 grows as 2t(h−r) where, as above, h is the source entropy and r is the redundancy of
a key source, equal to log n − hkey, where n is the number of symbols in the alphabet and hkey
is the entropy of the key source. If the redundancy approaches zero, the number of elements in
the high-probability set approaches 2ht, i.e., the Vernam cipher. This is what allows us to claim
that the Vernam cipher is robust to small deviations. Note that here we informally estimated the
level of deviation by the redundancy of a key sequence: the less the latter, the less the deviations.
However, below we also give a more formal justification: in this case the redundancy coincides
with the Kullback–Leibler distance, widely used in information theory for quantitative estimation
of differences between probability distributions.

It is worth mentioning that Shannon in his pioneering paper [1] noted that “from the point of
view of the cryptanalyst, a secrecy system is almost identical with a noisy communication system.”
Therefore, from the mathematical point of view, the problems of message deciphering and filtering
of random processes are very close. The approach developed in the present paper is close to the
methods used in [2], where the problem of filtering of stationary processes was considered.

2. PRELIMINARIES

We consider the case where a plaintext X = X1X2 . . . and a key sequence Y1Y2 . . . are indepen-
dently generated by stationary ergodic processes with the same finite alphabet A = {0, 1, . . . , n−1},
n ≥ 2, and Z = Z1Z2 . . . is given by (1).

The mth-order Shannon entropy and the limit Shannon entropy are defined as

hm(X) = − 1

m+ 1

∑
u∈Am+1

PX(u) log PX(u), h(X) = lim
m→∞

hm(X), (3)
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wherem ≥ 0 and PX(u) is the probability that X1X2 . . . X|u| = u (this limit always exists; see [3,4]).
Introduce also the conditional Shannon entropy

hm(X |Z) = hm(X,Z) − hm(Z), h(X |Z) = lim
m→∞

hm(X |Z). (4)

For two probability distributions, P and Q, defined on an alphabet A = {a1, . . . , an}, n ≥ 2,
the Kullback–Leibler divergence (see [3]) is given by

D(P ‖Q) =
∑
a∈A

P (a) log(P (a)/Q(a)).

For two stationary processes U = U1U2 . . . and V = V1V2 . . . , the mth-order Kullback–Leibler
divergence and the limit divergence are defined by

D(U ‖V )m = − 1

m

∑
w∈Am

P (U1 . . . Um = w) log(P (U1 . . . Um = w)/P (V1 . . . Vm = w)),

D(U, V ) = lim
m→∞

D(U ‖V )m.

It is easily seen from these equalities and from (3) that if V generates independent and equiprobable
symbols of an n-symbol alphabet A, then

D(U ‖V ) = log n− h(U).

In what follows we denote this quantity, widely known in information theory and referred to as the
redundancy of the process U , by rU :

rU = log n− h(U). (5)

In what follows we will estimate the “closeness” of processes by the Kullback–Leibler divergence,
which in our case coincides with the redundancy.

In information theory, the following theorem is well known [3,4]

Theorem 1 (Shannon–McMillan–Breiman). Let U = U1U2U3 . . . be a stationary ergodic pro-
cess. Then ∀ ε > 0, ∀ δ > 0, for almost all U1U2U3 . . . there exists n′ such that for n > n′ we
have

P

{∣∣∣∣− 1

n
log P (U1 . . . Un)− h(U)

∣∣∣∣ < ε

}
≥ 1− δ, (6)

where P (U1 . . . Un) is the probability of U1 . . . Un.

3. MAIN RESULT

Theorem 2. Let a plaintext X = X1X2 . . . and a key Y = Y1Y2 . . . be independent processes
with an alphabet A = {0, 1, . . . , n− 1}, n ≥ 2, such that the process (X,Y ) = (X1, Y1), (X2, Y2), . . .
is stationary and ergodic, and let Z = Z1, Z2, . . . be given by (1). Then with probability 1 for any
ε > 0 and δ > 0 there exists an integer n′ such that for any t > n′ and Zt

1 = Z1, Z2, . . . Zt there
exists a set Ψ(Zt

1) of texts of length t for which

(i) P (Ψ(Zt
1)) > 1− δ;

(ii) For any X1 = X1
1 . . . X

1
t and X2 = X2

1 . . . X
2
t in Ψ(Zt

1), we have

1

t

∣∣∣log P (X1 |Zt
1)− log P (X2 |Zt

1)
∣∣∣ < ε;

(iii) lim inf
t→∞

1

t
log |Ψ(Zt

1)| ≥ h(X |Z).
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Proof. Since the process (X,Z) is a deterministic function of the process (X,Y ), the ergodicity
and stationarity of (X,Y ) implies ergodicity and stationarity of (X,Z).

Let us construct the set Ψ(Zt
1). To this end, we will apply the Shannon–McMillan–Breiman

theorem, but first let us note that

h(X |Z) = h(X,Z) − h(Z)

and
log P (X1 . . . Xn |Z1 . . . Zn) = log P (X1 . . . Xn;Z1 . . . Zn)− log P (Z1 . . . Zn).

Applying (6) to logP (X1 . . . Xn;Z1 . . . Zn) and h(X,Z) and to log P (Z1 . . . Zn) and h(Z), the
Shannon–McMillan–Breiman theorem can be written as follows: ∀ ε > 0, ∀ δ > 0, for almost
all (X1, Z1), (X2, Z2), . . . there exists n′ such that for n > n′ we have

P

{∣∣∣∣− 1

n
logP (X1 . . . Xn |Z1 . . . Zn)− h(X |Z)

∣∣∣∣ < ε

}
≥ 1− δ. (7)

Hence, for all ε > 0 and δ > 0 and for almost all Z there exists n′ such that for t > n′ we have

P

{∣∣∣∣−1

t
log P (X1X2 . . . Xt |Z1Z2 . . . Zt)− h(X |Z)

∣∣∣∣ < ε/2

}
≥ 1− δ. (8)

Define

Ψ(Zt
1) = {X = X1X2 . . . Xt : |P (X1X2 . . . Xt |Z1Z2 . . . Zt)− h(X |Z)| < ε/2}. (9)

Property (i) of the theorem immediately follows from (8). To prove (ii), note that for X1 =
X1

1 . . . X
1
t and X2 = X2

1 . . . X
2
t in Ψ(Zt

1) equations (8) and (9) imply

1

t

∣∣∣logP (X1 |Zt
1)− logP (X2 |Zt

1)
∣∣∣

≤ 1

t

∣∣∣log P (X1 |Zt
1)− h(X |Z)

∣∣∣+ 1

t

∣∣∣logP (X2 |Zt
1)− h(X |Z)

∣∣∣ < ε/2 + ε/2 = ε.

From (9) and property (i) we obtain

|Ψ(Zt
1)| > (1− δ)2t(h(X |Z)−ε).

Taking into account that this holds for all ε > 0, δ > 0, and t > n′, we arrive at (iii). �
Thus, the set Ψ(Zt

1) of all possible decipherings grows exponentially, its total probability is close
to 1, and probabilities of words within it are close to each other in magnitude.

The above theorem makes it possible to estimate characteristics of a cipher with the help of
the conditional entropy h(X |Z). The following estimates do not require the computation of the
conditional entropy but are based on quantities that are easier to compute.

Corollary. For almost all Z1Z2 . . . we have

lim inf
t→∞

1

t
log |Ψ(Zt

1)| ≥ h(X) + h(Y )− log n, (10)

h(X |Z) ≥ h(Y ) + h(X) − log n. (11)

Proof. From the well-known representation h(X,Z) = h(X) + h(Z |X) (see [3, 4]) we obtain

h(X |Z) = h(X,Z) − h(Z) = h(Z |X) + h(X)− h(Z).
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Taking into account that maxh(Z) = log n (see [3, 4]), where n is the number of symbols in the
alphabet, from the last equality we obtain

h(X |Z) ≥ h(Z |X) + h(X) − log n.

Since X and Y are independent, from the definition (1) of the running-key cipher it is seen that
h(Z |X) = h(Y ). From this and the preceding inequality we obtain (11). Property (iii) of Theorem 2
and inequality (11) imply (10). �

Remark. Using the notion of redundancy introduced above, one can express the growth rate of

the set
1

t
log |Ψ(Zt

1)| as follows:

lim inf
t→∞

1

t
log |Ψ(Zt

1)| ≥ h(X)− rY ,

lim inf
t→∞

1

t
log |Ψ(Zt

1)| ≥ h(Y )− rX ,

lim inf
t→∞

1

t
log |Ψ(Zt

1)| ≥ log n− (rX + rY ),

(12)

where rY = log n − h(Y ) and rX = log n − h(X) are the redundancies. Furthermore, from the
definition (5) of the redundancy and from inequality (11) we obtain

h(X |Z) ≥ h(Y )− rX .

These inequalities allow us to quantitatively estimate the influence of redundancy on the security
of a cipher and justify the fact well known in cryptography and information theory: reducing the
redundancy improves the security of ciphers.

Now let us return to the question on the influence of deviations from randomness for the Vernam
cipher. Let a plaintext be X1X2 . . . , Xi ∈ {0, 1}, and let a key sequence Y1Y2 . . . , Yi ∈ {0, 1}, be
generated by a source different from the Bernoulli source with P (0) = P (1) = 0.5. (For instance,
a key Y1Y2 . . . is generated by a Bernoulli source with symbol probabilities P (0) = 0.5 − τ and
P (1) = 0.5 + τ , where τ is a small number.) One can see from (12) that the cardinality of
the set Ψ(Zt

1) of high-probability decipherings grows exponentially with exponent not less than
h(X) − rY , where rY = 1 − h(Y ) is the redundancy. It is seen that if rY tends to 0, then the
cardinality of the set of high-probability decipherings tends to the cardinality of the corresponding
set in the Vernam cipher. Indeed, h(Y ) = 1, and therefore rY = 0, as in the Vernam cipher.
Informally, we may say that the one-time pad is robust to small deviations from randomness.
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