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Abstract—Perfectly secure steganographic systems have been
recently described for a wide class of sources of covertexts. The
speed of transmission of secret information for these stegosystems
is proportional to the length of the covertext. In this work
we show that there are sources of covertexts for which such
stegosystems do not exist. The key observation is that if the set
of possible covertexts has a maximal Kolmogorov complexity,
then a high-speed perfect stegosystem has to have complexity of
the same order.

I. INTRODUCTION

The goal of steganography can be described as follows.
Alice and Bob can exchange messages of a certain kind (called
covertexts) over a public channel. The covertexts can be, for
example, a sequence of photographic images, videos, text
emails, and so on. Alice wants to pass some secret information
to Bob so that Eve, the observer, cannot notice that any
hidden information is being passed. Thus, Alice should use
the covertexts to hide the secret text.

Cachin [1] suggested an information-theoretic model for
steganography, along with a definition of a perfectly secure
steganographic system. According to this model, Alice has an
access to a probabilistic source of covertexts. It is usually
assumed that the secret message can be represented as a
sequence of independent equiprobable bits. She has to embed
her secret message into covertexts in such a way that Bob can
decode the message. A stegosystem is called perfectly secure
if the distribution of the output is the same as the distribution
at the source of covertexts. Indeed, in this case nobody is able
to distinguish containers with hidden information and “empty”
ones (i.e. without hidden information).

Let us consider an example of a perfect stegosystem sug-
gested in [7]. The source of covertexts µ is as follows. It
generates sequences of n independently identically distributed
letters from some finite alphabet A, where n ∈ N is given.
For the sake of simplicity we consider the binary alphabets
A = {a, b}, but the construction can be used for the general
case too [7]. The distribution µ can be unknown to Alice and
Bob. Suppose that Alice has to transmit a secret sequence y∗ =
y1y2 . . . generated by a source ω, where ω(yi = 0) = 1/2
independently for all i ∈ N, and let there be given a covertext

sequence x∗ = x1x2 . . . generated by µ. For example, let

y∗ = 01100 . . . , x∗ = aababaaaabbaaaaabb (1)

The sequences x∗ and y∗ are encoded in a new sequence X
(to be transmitted to Bob) such that y∗ is uniquely determined
by X , and the distribution of X is the same as the distribution
of x∗ (that is, µ; in other words, X and x∗ are statistically
indistinguishable).

The encoding is carried out in two steps. First we group all
symbols of x∗ into pairs, and denote

aa = u, bb = u, ab = v0, ba = v1.

In our example, the sequence (1) is represented as

x∗ = aa ba ba aa ab ba aa aa bb = uv1v1uv0v1uuu

Then X is acquired from x∗ as follows: all pairs corresponding
to u are left unchanged, while all pairs corresponding to vk
are transformed to pairs corresponding to vy1vy2vy3 ; in our
example

X = aa ab ba aa ba ab aa aa bb

Decoding is obvious: Bob groups the symbols of X into
pairs, ignores all occurrences of aa and bb and changes ab
to 0 and ba to 1. Note that this algorithm is closely related
to the method of generating random bits suggested by von
Neumann [5].

The described stegosystem has the following properties. The
sequence of symbols output by the stegosystem obeys the same
distribution µ as the input sequence. The average length of
the transmitted secret sequence is nµ(ab); in other words, the
speed of transmission of hidden information is µ(ab) secret
bits per letter of covertext. Moreover, in [7] a generalization
of the described construction is proposed, for which the speed
of transmission of secret text approaches the Shannon entropy
h(µ) = −(µ(a) logµ(a) + µ(b) logµ(b)) when n goes to
infinity. In addition, a similar construction is proposed in the
same work for the case of arbitrary alphabets, and for finite-
alphabet Markov sources of covertexts.

So, we can see that perfectly secure stegosystems exist
for a wide class of covertexts and, moreover, such systems
are quite simple and have a high speed of transmission of



secret information. Naturally, one is interested in the question
of whether such stegosystems exist for any possible source
of covertext. This problem is of interest since sources of
covertexts that are of particular practical importance, such
as texts in natural languages or photographs, do not seem
to be well-described by any known simple model. Here we
answer this question in the negative. More precisely, it turns
out that there exists such a set of covertexts of length n for
which simple stegosystems which have speed of transmission
of hidden text Ω(n) do not exist. Here simplicity is measured
by Kolmogorov complexity of the system, and a stegosystem
is considered “simple” if its complexity is exp(o(n)), when
n goes to infinity. Kolmogorov complexity is an intuitive
notion that often helps to establish results that advance the
understanding of principled limitations a certain problem or
model imposes; it has been used as such in many works, see,
for example, [3], [8], [11], [12].

This result can be interpreted as that there are such com-
plicated sources of data, that one cannot conceivably put
any significant amount of hidden information into a source,
without changing its characteristics, even though the entropy
of the source is very high. This may explain what is known
in practice: for example, it is apparently very hard to put
any hidden message into a given text in a natural language,
without making the text “unnatural”. Of course, rather than
trying to change a given text, the communicating parties can
easily agree in advance on two texts each of which codes
one secret bit, so that when the need for communication
arises, Alice can transmit one of the texts, thereby passing
one secret bit. However, in order to communicate more than
one bit, to use the same method they would have to have a
database of covertexts that is exponentially large with respect
to the message to pass. Moreover, even this stegosystem will
not be perfectly secure, since the source of covertexts with
hidden information is concentrated on a small subset of all
the possible covertexts of the given length. If the stegosystem
is used once, then perhaps no reliable detection of the hidden
message is possible. If it is to be used on multiple occasions,
that is, if we wish to construct a general purpose stegosystem
for transmitting, say, δn bits with an n-bit message (for some
fixed δ), we will need to construct a database of effectively all
possible covertexts. At least, this is the case for some sources
of covertexts, as the result of this work demonstrates, and
it seems likely that it is the case for such sources as texts
in natural languages or even photographic images. Thus, our
result may be helpfull in clarifying the nature of the difficulties
that arise in construction of real steganographic systems which
use human-generated sources of covertexts.

II. PRELIMINARIES

We use the following model for steganography, mainly
following [1]. It is assumed that Alice has an access to an
oracle which generates covertexts according to some fixed but
unknown distribution of covertexts µ. Covertexts belong to
some finite alphabet A. For the sake of simplicity we consider
the case A = {0, 1}; the general case is analogous. Alice wants

to use this source to transmit hidden messages. A hidden (or
secret) message is a sequence of letters from {0, 1} generated
independently with equal probabilities of 0 and 1. We denote
the source of hidden messages by ω. This is a commonly used
model for the source of secret messages, since it is assumed
that secret messages are encrypted by Alice using a key shared
only with Bob. If Alice uses the Vernam cipher (a one-time
pad) then the encrypted messages are indeed generated accord-
ing to the Bernoulli 1/2 distribution, whereas if Alice uses
modern block or stream ciphers then the encrypted sequence
“looks like” a sequence of independent Bernoulli 1/2 trials.
(Here “looks like” means indistinguishable in polynomial time,
or that the likeness is confirmed experimentally by statistical
data, see, e.g. [6].) The third party, Eve, is a passive adversary:
Eve is reading all messages passed from Alice to Bob and is
trying to determine whether secret messages are being passed
in the covertexts or not. Clearly, if covertexts with and without
hidden information have the same probability distribution (µ)
then it is impossible to distinguish them.

Since the number of possible covertexts x in the set An is
finite, using a stegosystem once Alice can only transmit a finite
number of bits of the secret message. We tacitly assume that
there are always more secret bits than Alice wants to pass,
which is formalized by assuming that Alice has an infinite
secret message (in practice, if Alice runs out of secrets, she
can fill the remainder of the message with random noise).
Depending on the covertext that Alice has and on the actual
secret message, the length of the secret text that she transmits
may vary. Naturally, one wishes to maximize the expected
length of the secret message that the encoder can transmit. We
require, however, that the decoding is always correct, that is,
Bob gets the whole secret message that Alice has transmitted,
without errors.

The steganographic protocol can be summarized in the
following definitions.

Definition 1 (secret or hidden text): A source ω of secret
text y∗ = y1, y2, . . . is such that ω(yi = 0) = ω(yi = 1) =
1/2, independently for all i ∈ N.

Definition 2 (stegosystem): A stegosystem St is a family
(indexed by n) of pairs of functions: the encoder, that maps
a pair (x, y∗) ∈ An × {0, 1}∞ (a covertext and a secret
sequence) into a pair (t,StEncn(x, (y1 . . . yt)) ∈ N × An:
the number of secret bits transmitted and the output covertext.
The decoder StDecn is a function from An to {0, 1}∗. We
will often omit the parameter n from the notation, when its
value is clear.

Definition 3 (steganographic protocol): A parameter n is
fixed. Alice draws a covertext x ∈ An generated by a source
of covertexts µ (a distribution on An) and a secret message
y∗ = y1, y2, . . . according to the source ω. The sources ω and
µ are independent of each other.

Given x ∈ An and y∗ Alice using a stegosystem St obtains
the number of secret bits she can pass t(x, y∗) ≥ 0, and
a covertext StEnc(x, (y1 . . . yt)) ∈ An that is transmitted
over a public channel to Bob. (Only StEnc(x, (y1 . . . yt)) is
transmitted; the number t is not.)



Bob (and any possible observer Eve) receives x′ ∈ An

and obtains using the decoder StDec the resulting message
StDecn(x′) = y1 . . . yt.

Definition 4 (perfect security): A steganogrpahic system is
called perfectly secure if the sequence of covertexts x∗ and
the steganographic sequence X have the same distribution:
Prµ×ω(StEnc = x′) = µ(x′) for any x′ ∈ An, where the
first probability is taken with respect to the distribution of
covertexts µ and that of secret text ω.

Definition 5 (speed of transmission): For a stegosystem St
the speed of transmission of secret text vn(St) is defined as
Eµ×ωt(x, y∗)/n (the expectation is with respect to µ and ω).

Note that often (in particular, in [1], [4]) more general
steganographic protocols are considered, allowing for non-
perfect security, transmission with errors, several draws from
the source of covertexts, etc. We have decided to concentrate
on the simple model presented since it is rich enough for
perfectly secure stegosystems to exist, for a wide classes of
sources of covertexts (e.g. all finite-memory sources, [7]).
Some possible extensions are discussed in Section IV.

For definitions, notation, and an introduction to Kolmogorov
complexity, see [3]. Informally, the Kolmogorov complexity,
or algorithmic entropy, can be defined as follows [10]: K(x)
of a string x is the length (number of bits) of a shortest
binary program (string) to compute x on a fixed reference
universal computer (such as a particular universal Turing
machine). Intuitively, K(x) represents the minimal amount of
information required to generate x by any effective process.
The conditional Kolmogorov complexity K(x|y) of x relative
to y is defined similarly as the length of a shortest program
to compute x, if y is furnished as an auxiliary input to the
computation.

We will use some simple properties of K, such as K(s) ≤
|s|+ c for any word s, whose proofs can be found in e.g. [3].
Here it is worth noting that K(s) does not take into account
the time or extra memory it takes to compute s.

III. MAIN RESULTS

Theorem 1: For every δ > 0 there is a family indexed by
n ∈ N of distributions Pn on An with h(Pn) ≥ n − 1, such
that every stegosystem Stn whose Kolmogorov complexity
satisfies logK(Stn) = o(n) and whose speed of transmission
of hidden text vn(Stn) is not less than δ, is not perfectly secure
from some n on.

Proof: The informal outline of the proof follows. We will
construct a sequence of sets Xn of words of length n whose
Kolmogorov complexity is the highest possible, namely 2Ω(n).
For each n ∈ N, the distribution Pn is uniform on Xn. We will
then show that, in order to have the speed of transmission δ >
0 a perfectly secure stegosystem must be able to generate a
large portion of the set Xn, for each n. This will imply that the
complexity of such a stegosystem has to be 2Ω(n). The latter
implication will be shown to follow from the fact that, in order
to transmit some information, a stegosystem must replace the
input with some output that could have been generated by

the source; this, for perfectly secure stegosystems, amounts to
knowing at least a large portion of Xn.

Next we present the formal proof. Fix n ∈ N and let X ⊂
An be any set such that |X| = 2n−1 and

K(X) = 2n(1 + o(1)). (2)

The existence of such a set can be shown by a direct calcu-
lation of the number of all subsets with 2n−1 elements; the
maximal complexity is equal (up to a constant) to the log of
this value.

The distribution Pn is uniform on X . Assume that there is
a perfectly secure stegosystem Stn for the family Pn, n ∈ N,
and let the speed of transmission of hidden text be not less
than δ. Define the set Z as the set of those words which are
used as codewords Z := {x ∈ An : StDec(x) 6= Λ}. Since the
expected speed of transmission of hidden text is lower bounded
by δ, we must have |Z| ≥ δ2n−1 (indeed, since every word
codes at most n − 1 bits, the expected speed of transmission
must satisfy (n− 1) |Z|2n−1 ≥ δn). Since St is perfectly secure
Z ⊂ X . Let us lower-bound the complexity K(Z|X\Z) of
the set Z given X\Z. Given the description of X\Z and the
description of Z relative to X\Z one can reconstruct X . That
is why K(Z|X\Z) ≥ K(X)−K(X\Z) +O(1). The size of
X\Z is not greater than 2n−1(1− δ). Hence,

K(Z|X\Z) ≥ K(X)− max
|U |≤2n−1(1−δ)

K(U) +O(1). (3)

The latter maximal complexity can be calculated as follows:

max
|U |≤2n−1(1−δ)

K(U) = log
(

2n

2n−1(1− δ)

)
+O(1).

Applying the Stirling approximation for factorial we obtain

max
|U |≤2n−1(1−δ)

K(U) ≤ 2n(1− γ)(1 + o(1)),

where γ = 1 − h( 1−δ
2 , 1+δ

2 ). From this equality, (2), and (3)
we get

K(Z) ≥ γ2n(1 + o(1)).

Furthermore, define Z0 as the set of words that code those
secret messages that start with 0, and Z1 those that start with 1:

Zi := {x ∈ An : StDec(x) = iu, u ∈ {0, 1}∗}, i ∈ {0, 1}.
(4)

Clearly, Z = Z1 ∪ Z0. Hence, K(Z|X\Z) ≤ K(Z0|X\Z) +
K(Z1|X\Z)+O(1), so that K(Zi|X\Z) ≥ K(Z|X\Z)/2+
O(1) for some i ∈ {0, 1}. Let this i be 1. Thus,

K(Z1|X\Z) ≥ γ2n−1(1 + o(1)). (5)

We will next show how to obtain Z1 from Z\Z1 and the
stegosystem St, thus arriving at a contradiction with the
assumption that logK(St) = o(n).

For a set T ⊂ X define

ϕ(T ) := {StEnc(x, 1u) : x ∈ T, u ∈ {0, 1}∗}.

Since St is perfectly secure, ϕ(T ) ⊂ X for every T ⊂ X .
Let T0 = X\Z1, and Tk = Tk−1∪ϕ(Tk−1). Since X is finite



and each Tk−1 is a subset of Tk, there must be such k0 ∈ N
that Tk = Tk0 for all k > k0. There are two possibilities:
either Tk0 = X or X\Tk0 6= ∅. Assume the latter, and define
Z ′1 = X\Tk0 . Then to obtain an element of Z ′1 as an output
of the stegosystem St, the input must be an element of Z ′1
and a secret message that starts with 1. From this, and from
the fact that the distribution of the output is the same as the
distribution of the input (that is, St is perfectly secure), we
get

Pn(Z ′1) = Pn(Z ′1, y = 1u) = Pn(Z ′1)ω(1) = Pn(Z ′1)/2,

which implies Pn(Z ′1) = 0 and Z ′1 = ∅. Therefore, there is
a k ∈ N such that Tk = X . This means that a description of
Z1 can be obtained from a description of X\Z1 = T0 and
St. Indeed, to obtain Z1 it is sufficient to run StEnc on all
elements of T0 with all inputs starting with 1, thus obtaining
T1, and then repeat this procedure until we get Tk+1 = Tk for
some k, wherefrom we know that Tk = X and Z1 = Tk\T0.
Thus,

K(Z1|X\Z1) ≤ K(St) +O(1) = 2o(n) (6)

which contradicts (5).

IV. POSSIBLE EXTENSIONS

The definitions of stegosystems and steganographic protocol
that we have used allow for several extensions. In particular,
we have made the requirement that Alice can draw only one
covertext from the source in order to construct her message.
We have also required that the decoding is always correct, did
not allow for a secret key in the protocol (a secret key could
be used before entering into steganographic communication in
order to obtain the secret message y∗, but is out of scope of the
protocol), etc. These requirements, along with the requirement
of perfect security, might be considered restrictive; however,
as was mentioned in the Introduction, for some sources of
covertexts (such as i.i.d. or finite-memory sources) there are
indeed perfectly secure steganographic systems that meet all
the requirements we have made, and which also have the
highest possible speed of transmission of hidden text: vn(St)
approaches (exponentially fast) the Shannon entropy h(µ) of
the source of covertexts, as n grows (see [7]). This is why
we have decided to sacrifice the generality for the sake of
simplicity of the model presented.

Nevertheless, it is worth noting that the main results of this
work can be extended to more general cases.

For example, if we allow Alice and Bob to share a secret
key kn, then trivially Theorem 1 holds with K(Stn) replaced
by K(Stn) +K(kn). Let us briefly stop on another extension
of the protocol. Instead of allowing Alice to draw only one
covertext from the source, we can allow her to draw several,
say, M covertexts. Given M covertexts x1, . . . , xm, where
xi ∈ An, and a secret sequence y∗ Alice constructs a single
x′ ∈ An which is passed (over a public channel) to Bob.
In particular, depending on the message y∗, Alice can chose
xi that already encodes the message, if such xi, 1 ≤ i ≤ M
exists. The speed vn of transmission of secret text is measured
with respect to what is passed over the public channel only (i.e.
x′). Then Theorem 1 admits the following extension: there are
such sources of covertexts, that any perfectly secure simple
stegosystem must draw Mn = 2Ω(n) covertexts in order to
transmit δn bits, for any given δ > 0.
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