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a b s t r a c t

The problem of filtering of finite-alphabet stationary ergodic time
series is considered. A method for constructing a confidence set for
the (unknown) signal is proposed, such that the resulting set has
the following properties. First, it includes the unknown signal with
probability γ , where γ is a parameter supplied to the filter. Sec-
ond, the size of the confidence sets grows exponentially with a rate
that is asymptotically equal to the conditional entropy of the signal
given the data. Moreover, it is shown that this rate is optimal. We
also show that the described construction of the confidence set can
be applied to the case where the signal is corrupted by an erasure
channel with unknown statistics.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The problem of estimating a discrete signal X1, . . . , Xt from a noisy version Z1, . . . , Zt has attracted
the attention of many researchers due to its great importance for statistics, computer science, image
processing, astronomy, biology, cryptography, information theory and many other fields. The main
attention is usually focused on developing methods of estimation (denoising, or filtering) of the
unknown signal, with the performance measured under a given fidelity criterion; see, for example,
[7,8] and references therein. Such an approach can be related to the problem of a point estimation in
statistics.

An alternative approach, often considered in mathematical statistics, is that of constructing confi-
dence sets. That is, one tries to use the data to construct a set that includes the unknown parameter
(in our case, the signal) with a prescribed probability, while trying to keep the size of the set as small
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as possible (see, e.g. [5] for some classical examples). Such a set is usually constructed as the set of
most likely values of the parameter.

In statistics, the two approaches can be considered complementary. However, in filtering, while
the point-estimation approaches abound, the confidence-set counterpart is missing. Note that, in the
presence of noise, the exact recovery of the signal could be impossible, and thus the point estimate is
necessarily imperfect. The choice of a particular estimate of the signal out of many likely alternatives
could be largely arbitrary. Moreover, the optimal choice may depend on the specific application
involved. In such cases, a confidence-set estimate provides additional information that can potentially
be used to select a more appropriate (for each given application) point estimate.

This is the approach and the problems considered in this work. We consider a model in which
the underlying noiseless signal and the resulting corrupted (noisy) signal (and thus the channel) are
assumed to be stationary ergodic processes with finite alphabets. We mainly concentrate on the
case where the probability distributions of the noiseless signal and the noisy channel are known.
(Obviously, in such a case the distribution of the corrupted signal is known, too.) Besides, the case of
an erasure channel with unknown distribution is also considered, because in this case the conditional
distribution of the noiseless signal is known, even though the distribution of the noise is unknown.
This gives a possibility to apply directly the methods proposed for the case of known statistics of
the noiseless signal and noise. The results that we obtain establish the optimal rate of growth (with
respect to time, or to the length of the signal) of the size of the confidence set, as well as a method for
constructing such a set. The optimal rate turns out to be equal to the entropy of the signal given its
noisy version.

The following examples illustrates the fact that a confidence set can provide additional informa-
tion; the example also exposes the notation used further in the text. Suppose that the noiseless se-
quence is a text in English, corrupted by an erasure noise in such a way that the probability of each
symbol to be erased does not depend on the symbol. Suppose that the given sequence is as follows:

Z1, . . . , Z10 = Great fea ∗ .

In this example, we do not know the probability distribution of the original words. Instead (similarly
to a method proposed in [13]) we will use the estimates obtained via a search engine (here we used
Google) that gives frequencies of occurrence of a search term in a vast corpus of documents. The pre-
cision of these estimates is questionable (in particular, the outputs of a search engine vary to a certain
extent), but it suffices for the purpose of this illustration. Using this method, we obtain the following
probabilities:

X1, . . . , X10 = Great fear, P(X1, . . . , X10|Z1, . . . , Z10) = 0.664,
X1, . . . , X10 = Great feat, P(X1, . . . , X10|Z1, . . . , Z10) = 0.335,
all other values, P(X1, . . . , X10|Z1, . . . , Z10) < 0.001.

We can see that using the point estimate one obtains only the first version (Great fear). Using the con-
fidence set with γ , say, 0.99, one is able to see two possible texts (Great fear and Great feat), which
have a very different meaning. It appears that the choice of the answer in this casemay depend on the
context or the application used.

The goal of this paper is to describe a construction of confidence sets and to give an estimate of
their size, for the case when the signal and noise are stationary ergodic processes with finite alpha-
bets. It is shown that for any γ ∈ (0, 1) the size of the confidence set grows exponentially with the
rate h(X |Z), where h(X |Z) is the limit (conditional) Shannon entropy. This result is valid for the case
when the probability distributions of noiseless signal and noise are known, as well as for the case
when the probability distribution of the signal is known and the noise is described by a stationary
erasure channel with memory whose probability distribution is unknown. Moreover, we prove that
the rate h(X |Z) is minimal, which means that the suggested method of constructing confidence sets
is asymptotically optimal.

It is worth noting that the information theory is deeply connected with statistics of time series
and signal processing; see, for example, [3,6,10,9,12] and [7,8], correspondingly. In this paper a new
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connection of this kind is established: it is shown that the Shannon entropy determines the rate of
growth of the size of the confidence set for the signal, given its version corrupted by stationary noise.

2. Preliminaries

We consider the case where the signal X = X1, X2, . . . and its noisy version Z = Z1, Z2, . . . are
described by stationary ergodic processes with finite alphabets X and Z respectively. (There may be
arbitrary long-range dependencies between the variables.) It is assumed that probability distributions
of both processes are known, and, hence, the statistical structure of the noise corrupting the signal
X = X1, X2, . . . is known, too. Introduce the short-hand notation X1..t for X1, . . . , Xt , and analogously
for Z .

The n-order Shannon entropy and the limit Shannon entropy are defined as follows:

hn(X) = −
1

n + 1


u∈An+1

PX (u) log PX (u), h(X) = lim
n→∞

hn(X) (1)

where n ≥ 0, PX (u) is the probability that X1X2 . . . X|u| = u (this limit always exists, see, for exam-
ple, [2,4]). Introduce also the conditional Shannon entropy

hn(X |Z) = hn(X, Z) − hn(Z), h(X |Z) = lim
n→∞

hn(X |Z). (2)

The Shannon–McMillan–Breiman theorem for conditional entropies can be stated as follows.

Theorem 1 (Shannon–McMillan–Breiman). ∀ε > 0, ∀δ > 0, for almost all Z1, Z2, . . . there exists n′

such that if n > n′ then

P
−1

n
log P(X1..n |Z1..n) − h(X |Z)

 < ε


≥ 1 − δ. (3)

The proof can be found in [1,2,4].

3. Confidence sets and their properties

Informally, for any γ ∈ (0, 1) and any sequence Z1, . . . , Zt we define the confidence set Ψ t
γ (Z1, Z2,

. . . , Zt) as follows: the set contains sequences x1, x2, . . . , xt whose probabilities P(x1..t |Z1..t) are
maximal and sum to γ . This definition is not precise, since it is possible that the sum cannot be made
equal to γ exactly. That is why the formal definition of the confidence set will use randomization.

For this purpose, we order all sequences X1..t according to their conditional probabilities, in de-
creasing order. That is, we enumerate all sequences x1..t ∈ Xn in such a way that (a1..t) ∈ Xt has a
smaller index than (b1..t) ∈ Xt if either P(a1..t |Z1..t) > P(b1..t |Z1..t), or P(a1..t |Z1..t) = P(b1..t |Z1..t) and
(a1..t) is lexicographically less than (b1..t). Let j be the integer for which

j−1
i=1 P(xi1..t |Z1..t) ≤ γ andj

i=1 P(xi1..t |Z1..t) > γ . If
j−1

i=1 P(xi1..t |Z1..t) = γ , then define Ψ t
γ (Z1..t) as the set {x11..t , . . . , x

j−1
1..t }. Oth-

erwise, Ψ t
γ (Z1..t) also contains j − 1 first elements, and additionally the element xj1..t with probability

(γ −
j−1

i=1 P(xi1..t |Z1..t))/P(xj1..t |Z1..t). (Note that this procedure is commonly used in mathematical
statistics for making the confidence level exactly γ .) When talking about the sizes of the confidence
sets we refer to their expected (with respect to the randomization) size.

Next, we estimate the size of the described confidence set.

Theorem 2. Let an (unknown) signal X = X1X2, . . . and its noisy version Z = Z1Z2, . . . be stationary
ergodic processes with finite alphabets. Then, for every γ ∈ (0, 1), all t ∈ N and almost every Z1, . . . , Zt
the confidence set Ψ t

γ (Z1, . . . , Zt) contains the unknown (X1, . . . , Xt) with probability γ :

P{X1..t ∈ Ψ t
γ (Z1..t)} = γ , (4)
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while, with probability 1, the size of the set Ψ t
γ (Z1, . . . , Zt) grows exponentially with the exponent rate

that is equal to the conditional entropy:

lim
t→∞

1
t
log E|Ψ t

γ (Z1, . . . , Zt)| = h(X |Z) a.s., (5)

where the expectation is with respect to the randomization used in constructing the confidence sets.
Besides, the size of Ψ t

γ (Z1, . . . , Zt) is asymptotically minimal. More precisely, let Φ t
γ (Z1..t) be any

confidence sets satisfying P

X1..t ∈ Φ t

γ (Z1..t)


≥ γ for almost all Z12... and for all t ∈ N. Then, with
probability 1,

lim inf
t→∞

1
t
log |Φ t

γ (Z1, . . . , Zt)| ≥ h(X |Z). (6)

Proof. The proof of (4) immediately follows from the construction of the setΨ t
γ (Z1Z2 . . . Zt). The proof

of (5) is based on (3). Take any ε > 0 and any δ > 0 such that

1 − δ ≥ γ . (7)

From (3) we conclude that for almost all Z1, Z2, . . . there exists n′ such that (3) is valid if n > n′. Take
any such n and rewrite (3) as follows:

P

2−n(h(X |Z)+ε)

≤ P(X1..n|Z1..n) ≤ 2−n(h(X |Z)−ε)


≥ 1 − δ. (8)

Thus, the probability of all strings x1, . . . , xn for which we have P(x1..n|Z1..n) ≥ 2−n(h(X |Z)+ε) is at least
(1 − δ). Taking into account (7), we have

|Ψ t
γ (Z1..n)| ≤ γ /2−n(h(X |Z)+ε),

so that

1
n
log |Ψ t

γ (Z1..n)| ≤ h(X |Z) + ε + O(1/n) (9)

for n > n′. Having taken into account that (9) holds for every ε > 0 we obtain that a.s.

lim sup
t→∞

1
t
log E|Ψ t

γ (Z1, . . . , Zt)| ≤ h(X |Z). (10)

The opposite inequality (6) will be proven for the size of any confidence sets, implying (5).
To prove (6), we take, as before, any ε > 0 and fix δ := γ /2. Then from some n on we have (8). Let

Υ be a confidence set for this n and a certain γ . Define

Φ =

x1..n : 2−n(h(X |Z)+ε)

≤ P(x1..n|Z1..n) ≤ 2−n(h(X |Z)−ε)

. (11)

By definition,


x1..n∈Υ P(x1..n|Z1..n) ≥ γ . From this and (8) we obtain
x1..n∈Υ ∩Φ

P(x1..n|Z1..n) ≥ γ − δ.

From this and (11) we get

|Υ | ≥ |Υ ∩ Φ| ≥ (γ − δ)2n(h(X |Z)−ε).

Hence,

lim inf
t→∞

1
n
log |Υ | ≥ h(X |Z) − ε.

Since this inequality is true for any confidence setΥ and any ε > 0, we obtain (6). Taking into account
that (6) is true for Ψ t

γ (Z1, . . . , Zt), too, we obtain from (10), Eq. (5). �
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4. Erasure channel with unknown statistics

In this section we consider the case when the channel statistics is unknown, but the channel has
a specific form: it is an erasure channel, such that the probability of each symbol to be erased is the
same for all symbols. We show that the confidence sets described above are asymptotically optimal
in this case, too. The reason why this extension holds is that in this case the conditional probabilities
P(X1..n|Z1..n) are known.

The formal description of the consideredmodel is as follows.We still assume that there is a known
stationary ergodic source generating the signal X1, X2, . . . . The erasure channel is defined in the two
following steps: first, there is a stationary ergodic process Θ generating letters from the alphabet
{Λ, ∗} and, second, the noisy channel is determined by the following ‘‘summation’’ of the (uncor-
rupted) sequence X1, X2, . . . and the noise sequence Θ1, Θ2, . . .:

Zi =


Xi if Θi = Λ

∗ if Θi = ∗.

Theorem 3. Let an (unknown) signal X = X1X2, . . . and Z1, Z2, . . . be a stationary ergodic signal and its
version corrupted by an unknown stationary erasure channel. Then, for every γ ∈ (0, 1), all t ∈ N and
almost every Z1, . . . , Zt the (above described) confidence set Ψ t

γ (Z1, . . . , Zt) contains the unknown (X1,

. . . , Xt) with probability γ :

P{X1..t ∈ Ψ t
γ (Z1..t)} = γ , (12)

while, with probability 1, the size of the set Ψ t
γ (Z1, . . . , Zt) grows exponentially with the exponent rate

that is equal to the conditional entropy:

lim
t→∞

1
t
log E|Ψ t

γ (Z1, . . . , Zt)| = h(X |Z) a.s., (13)

where the expectation is with respect to the randomization used in constructing the confidence sets.

Proof. It is enough to notice that, although the erasure channel is not known, the probabilities
P(X1..n|Z1..n) are known. Therefore, the proof of this theorem is identical to that of Theorem 2. �

5. Discussion

To the best of our knowledge, the problem of constructing a confidence set for the unknown signal
was not considered before, which is why there are many quite natural and obvious extensions and
generalizations of the present work. First, it is interesting to consider this problem for certain specific
classes of distributions of the signal and noise, such as i.i.d. and Markov sources. For these classes of
sources it should be possible to obtain rates of convergence in those statements that in this work are
only asymptotic, for example in (5).

Second, a natural question is to find a construction of the confidence set for the caseswhere the sig-
nal is multi-dimensional. This is particularly important for applications, many of which are concerned
with denoising such objects as photographs or video fragments. Another interesting generalization is
the case where the alphabets are (subsets of), for example, the Euclidean space. This generalization
can be also interesting from the practical point of view. Finally, the case where statistics of the noise
and/or signal are unknown is obviously of great theoretical and practical interest.
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